Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 126(9): 4347-4354, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35299819

RESUMEN

Room temperature oxygen hydrogenation below graphene flakes supported by Ir(111) is investigated through a combination of X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations using an evolutionary search algorithm. We demonstrate how the graphene cover and its doping level can be used to trap and characterize dense mixed O-OH-H2O phases that otherwise would not exist. Our study of these graphene-stabilized phases and their response to oxygen or hydrogen exposure reveals that additional oxygen can be dissolved into them at room temperature creating mixed O-OH-H2O phases with an increased areal coverage underneath graphene. In contrast, additional hydrogen exposure converts the mixed O-OH-H2O phases back to pure OH-H2O with a reduced areal coverage underneath graphene.

2.
Nano Lett ; 17(5): 3105-3112, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28426934

RESUMEN

Our scanning tunneling microscopy and X-ray photoelectron spectroscopy experiments along with first-principles calculations uncover the rich phenomenology and enable a coherent understanding of carbon vapor interaction with graphene on Ir(111). At high temperatures, carbon vapor not only permeates to the metal surface but also densifies the graphene cover. Thereby, in addition to underlayer graphene growth, upon cool down also severe wrinkling of the densified graphene cover is observed. In contrast, at low temperatures the adsorbed carbon largely remains on top and self-organizes into a regular array of fullerene-like, thermally highly stable clusters that are covalently bonded to the underlying graphene sheet. Thus, a new type of predominantly sp2-hybridized nanostructured and ultrathin carbon material emerges, which may be useful to encage or stably bind metal in finely dispersed form.

4.
ACS Nano ; 9(3): 2445-53, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25693621

RESUMEN

Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic "water splitting" reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect of gold contact are only understood on a rudimentary level, which at present prevents further exploration. We have synthesized a model system of flat, layered cobalt oxide nanoislands supported on a single crystal gold (111) substrate. By using a combination of atom-resolved scanning tunneling microscopy, X-ray photoelectron and absorption spectroscopies and density functional theory calculations, we provide a detailed analysis of the relationship between the atomic-scale structure of the nanoislands, Co oxidation states and substrate induced charge transfer effects in response to the synthesis oxygen pressure. We reveal that conversion from Co(2+) to Co(3+) can occur by a facile incorporation of oxygen at the interface between the nanoisland and gold, changing the islands from a Co-O bilayer to an O-Co-O trilayer. The O-Co-O trilayer islands have the structure of a single layer of ß-CoOOH, proposed to be the active phase for the OER, making this system a valuable model in understanding of the active sites for OER. The Co oxides adopt related island morphologies without significant structural reorganization, and our results directly demonstrate that nanosized Co oxide islands have a much higher structural flexibility than could be predicted from bulk properties. Furthermore, it is clear that the gold/nanoparticle interface has a profound effect on the structure of the nanoislands, suggesting a possible promotion mechanism.

5.
ACS Nano ; 6(11): 9951-63, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23039853

RESUMEN

Using X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM) we resolve the temperature-, time-, and flake size-dependent intercalation phases of oxygen underneath graphene on Ir(111) formed upon exposure to molecular oxygen. Through the applied pressure of molecular oxygen the atomic oxygen created on the bare Ir terraces is driven underneath graphene flakes. The importance of substrate steps and of the unbinding of graphene flake edges from the substrate for the intercalation is identified. With the use of CO titration to selectively remove oxygen from the bare Ir terraces the energetics of intercalation is uncovered. Cluster decoration techniques are used as an efficient tool to visualize intercalation processes in real space.


Asunto(s)
Cristalización/métodos , Grafito/química , Iridio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Oxígeno/química , Sustancias Intercalantes/química , Cinética , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...