Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(25): 256801, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391738

RESUMEN

Electrons in image-potential states on the surface of bulk helium represent a unique model system of a two-dimensional electron gas. Here, we investigate their properties in the extreme case of reduced film thickness: a monolayer of helium physisorbed on a single-crystalline (111)-oriented Cu surface. For this purpose we have utilized a customized setup for time-resolved two-photon photoemission at very low temperatures under ultrahigh vacuum conditions. We demonstrate that the highly polarizable metal substrate increases the binding energy of the first (n=1) image-potential state by more than 2 orders of magnitude as compared to the surface of liquid helium. An electron in this state is still strongly decoupled from the metal surface due to the large negative electron affinity of helium and we find that even 1 monolayer of helium increases its lifetime by 1 order of magnitude compared to the bare Cu(111) surface.

2.
J Chem Phys ; 136(14): 144703, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22502539

RESUMEN

The dynamics of ethylene adsorption on the Si(001) surface was investigated by means of molecular beam techniques. A constant decrease of initial sticking probability s(0) was observed with increasing kinetic energy indicating a non-activated adsorption channel. With increasing surface temperature, s(0) decreases as well, pointing towards adsorption via a precursor state. Quantitative evaluation of the temperature dependence of s(0) via the Kisliuk model was possible for surface temperatures above 250 K; below that value, the temperature dependence is dominated by the adsorption dynamics into the precursor state. Maximum surface coverage was found to be reduced with increasing surface temperature, which is discussed on the basis of a long lifetime of the precursor state at low temperatures.

3.
Phys Rev Lett ; 108(5): 056801, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22400950

RESUMEN

The unoccupied electronic states of epitaxially grown graphene on Ru(0001) have been explored by time- and angle-resolved two-photon photoemission. We identify a Ru derived resonance and a Ru/graphene interface state at 0.91 and 2.58 eV above the Fermi level, as well as three image-potential derived states close to the vacuum level. The most strongly bound, short-lived, and least dispersing image-potential state is suggested to have some quantum-well character with a large amplitude below the graphene hills. The two other image-potential states are attributed to a series of slightly decoupled states. Their lifetimes and dispersions are indicative of electrons moving almost freely above the valley areas of the moiré superstructure of graphene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA