Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 20(1): 230, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36217142

RESUMEN

BACKGROUND: The nose of most animals comprises multiple sensory subsystems, which are defined by the expression of different olfactory receptor families. Drosophila melanogaster antennae contain two morphologically and functionally distinct subsystems that express odorant receptors (Ors) or ionotropic receptors (Irs). Although these receptors have been thoroughly characterized in this species, the subsystem-specific expression and roles of other genes are much less well-understood. RESULTS: Here we generate subsystem-specific transcriptomic datasets to identify hundreds of genes, encoding diverse protein classes, that are selectively enriched in either Or or Ir subsystems. Using single-cell antennal transcriptomic data and RNA in situ hybridization, we find that most neuronal genes-other than sensory receptor genes-are broadly expressed within the subsystems. By contrast, we identify many non-neuronal genes that exhibit highly selective expression, revealing substantial molecular heterogeneity in the non-neuronal cellular components of the olfactory subsystems. We characterize one Or subsystem-specific non-neuronal molecule, Osiris 8 (Osi8), a conserved member of a large, insect-specific family of transmembrane proteins. Osi8 is expressed in the membranes of tormogen support cells of pheromone-sensing trichoid sensilla. Loss of Osi8 does not have obvious impact on trichoid sensillar development or basal neuronal activity, but abolishes high sensitivity responses to pheromone ligands. CONCLUSIONS: This work identifies a new protein required for insect pheromone detection, emphasizes the importance of support cells in neuronal sensory functions, and provides a resource for future characterization of other olfactory subsystem-specific genes.


Asunto(s)
Receptores Odorantes , Animales , Antenas de Artrópodos/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Insectos/genética , Insectos/genética , Feromonas/genética , Feromonas/metabolismo , ARN/metabolismo , Receptores Odorantes/metabolismo
2.
Elife ; 102021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33666172

RESUMEN

Determining the molecular properties of neurons is essential to understand their development, function and evolution. Using Targeted DamID (TaDa), we characterize RNA polymerase II occupancy and chromatin accessibility in selected Ionotropic receptor (Ir)-expressing olfactory sensory neurons in Drosophila. Although individual populations represent a minute fraction of cells, TaDa is sufficiently sensitive and specific to identify the expected receptor genes. Unique Ir expression is not consistently associated with differences in chromatin accessibility, but rather to distinct transcription factor profiles. Genes that are heterogeneously expressed across populations are enriched for neurodevelopmental factors, and we identify functions for the POU-domain protein Pdm3 as a genetic switch of Ir neuron fate, and the atypical cadherin Flamingo in segregation of neurons into discrete glomeruli. Together this study reveals the effectiveness of TaDa in profiling rare neural populations, identifies new roles for a transcription factor and a neuronal guidance molecule, and provides valuable datasets for future exploration.


Asunto(s)
Drosophila melanogaster/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Ionotrópicos de Glutamato/genética , Animales , Animales Modificados Genéticamente , Antenas de Artrópodos/fisiología , Cromatina/metabolismo , Drosophila melanogaster/genética , Femenino , Masculino , Factores del Dominio POU , ARN Polimerasa II/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Factores de Transcripción
3.
Cereb Cortex ; 27(8): 4048-4059, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27473321

RESUMEN

Postnatal hippocampal neurogenesis induces network remodeling and may participate to mechanisms of learning. In turn, the maturation and survival of newborn neurons is regulated by their activity. Here, we tested the effect of a cell-autonomous overexpression of synaptic adhesion molecules on the maturation and survival of neurons born postnatally and on hippocampal-dependent memory performances. Families of adhesion molecules are known to induce pre- and post-synaptic assembly. Using viral targeting, we overexpressed three different synaptic adhesion molecules, SynCAM1, Neuroligin-1B and Neuroligin-2A in newborn neurons in the dentate gyrus of 7- to 9-week-old mice. We found that SynCAM1 increased the morphological maturation of dendritic spines and mossy fiber terminals while Neuroligin-1B increased spine density. In contrast, Neuroligin-2A increased both spine density and size as well as GABAergic innervation and resulted in a drastic increase of neuronal survival. Surprisingly, despite increased neurogenesis, mice overexpressing Neuroligin-2A in new neurons showed decreased memory performances in a Morris water maze task. These results indicate that the cell-autonomous overexpression of synaptic adhesion molecules can enhance different aspects of synapse formation on new neurons and increase their survival. Furthermore, they suggest that the mechanisms by which new neurons integrate in the postnatal hippocampus conditions their functional implication in learning and memory.


Asunto(s)
Molécula 1 de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Giro Dentado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Memoria Espacial/fisiología , Animales , Molécula 1 de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Supervivencia Celular/fisiología , Giro Dentado/citología , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/citología , Pruebas Neuropsicológicas , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Brain Struct Funct ; 220(4): 2027-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24748560

RESUMEN

The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.


Asunto(s)
Astrocitos/fisiología , Hipocampo/citología , Neuronas/citología , Familia de Aldehído Deshidrogenasa 1 , Animales , Astrocitos/ultraestructura , Bromodesoxiuridina/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía Inmunoelectrónica , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Fosfopiruvato Hidratasa/metabolismo , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Sinapsis/fisiología , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA