Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(30): eabn4117, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895811

RESUMEN

A fundamental challenge in materials science pertains to elucidating the relationship between stoichiometry, stability, structure, and property. Recent advances have shown that machine learning can be used to learn such relationships, allowing the stability and functional properties of materials to be accurately predicted. However, most of these approaches use atomic coordinates as input and are thus bottlenecked by crystal structure identification when investigating previously unidentified materials. Our approach solves this bottleneck by coarse-graining the infinite search space of atomic coordinates into a combinatorially enumerable search space. The key idea is to use Wyckoff representations, coordinate-free sets of symmetry-related positions in a crystal, as the input to a machine learning model. Our model demonstrates exceptionally high precision in finding unknown theoretically stable materials, identifying 1569 materials that lie below the known convex hull of previously calculated materials from just 5675 ab initio calculations. Our approach opens up fundamental advances in computational materials discovery.

2.
Sci Data ; 8(1): 217, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385453

RESUMEN

The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages. We illustrate the advantages of the OPTIMADE API through worked examples on each of the public materials databases that support the full API specification.

3.
Phys Rev Lett ; 117(13): 135502, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27715098

RESUMEN

Elpasolite is the predominant quaternary crystal structure (AlNaK_{2}F_{6} prototype) reported in the Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional theory quality formation energies of all ∼2×10^{6} pristine ABC_{2}D_{6} elpasolite crystals that can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching a mean absolute error of 0.1 eV/atom for a training set consisting of 10×10^{3} crystals. Important bonding trends are revealed: fluoride is best suited to fit the coordination of the D site, which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very small on average. Low formation energies result from A and B being late elements from group II, C being a late (group I) element, and D being fluoride. Out of 2×10^{6} crystals, 90 unique structures are predicted to be on the convex hull-among which is NFAl_{2}Ca_{6}, with a peculiar stoichiometry and a negative atomic oxidation state for Al.

4.
J Chem Phys ; 140(18): 18A536, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24832344

RESUMEN

We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu-O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.

5.
Sci Rep ; 4: 4157, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24561727

RESUMEN

Only a single linearly dispersing π-band cone, characteristic of monolayer graphene, has so far been observed in Angle Resolved Photoemission (ARPES) experiments on multilayer graphene grown on C-face SiC. A rotational disorder that effectively decouples adjacent layers has been suggested to explain this. However, the coexistence of µm-sized grains of single and multilayer graphene with different azimuthal orientations and no rotational disorder within the grains was recently revealed for C-face graphene, but conventional ARPES still resolved only a single π-band. Here we report detailed nano-ARPES band mappings of individual graphene grains that unambiguously show that multilayer C-face graphene exhibits multiple π-bands. The band dispersions obtained close to the K-point moreover clearly indicate, when compared to theoretical band dispersion calculated in the framework of the density functional method, Bernal (AB) stacking within the grains. Thus, contrary to earlier claims, our findings imply a similar interaction between graphene layers on C-face and Si-face SiC.

6.
Phys Rev Lett ; 101(23): 239701; author reply 239702, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19113600
7.
J Chem Phys ; 128(8): 084714, 2008 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-18315079

RESUMEN

We show that the AM05 functional [Armiento and Mattsson, Phys. Rev. B 72, 085108 (2005)] has the same excellent performance for solids as the hybrid density functionals tested in Paier et al. [J. Chem. Phys. 124, 154709 (2006); 125, 249901 (2006)]. This confirms the original finding that AM05 performs exceptionally well for solids and surfaces. Hartree-Fock hybrid calculations are typically an order of magnitude slower than local or semilocal density functionals such as AM05, which is of a regular semilocal generalized gradient approximation form. The performance of AM05 is on average found to be superior to selecting the best of local density approximation and PBE for each solid. By comparing data from several different electronic-structure codes, we have determined that the numerical errors in this study are equal to or smaller than the corresponding experimental uncertainties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...