Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(8): 10554-10569, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791306

RESUMEN

Vinylene carbonate (VC) and polyethylene oxide (PEO) have been investigated as functional agents that mimic the solid electrolyte interphase (SEI) chemistry of silicon (Si). VC and PEO are known to contribute to the stability of Si-based lithium-ion batteries as an electrolyte additive and as a SEI component, respectively. In this work, covalent surface functionalization was achieved via a facile route, which involves ball-milling the Si particles with sacrificial VC and PEO. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy indicate that the additives are strongly bound to Si. In particular, MAS NMR shows Si-R or Si-O-R groups, which confirm functionalization of the Si after milling in VC or PEO. Particle size analysis by dynamic light scattering reveals that the additives facilitate particle size reduction and that the functionalized particles result in more stable dispersions based on zeta potential measurements. Raman mapping of the electrodes fabricated from the VC and PEO-coated active material with a polyacrylic acid (PAA) binder reveals a more homogenous distribution of Si and the carbon conductive additive compared to the electrodes prepared from the neat Si. Furthermore, the VC-milled Si strikingly exhibited the highest capacity in both half- and full-cell configurations, with more than 200 mAh g-1 measured capacity compared to the neat Si in the half-cell format. This is linked to an improved electrode processing based on the Raman and zeta potential measurements as well as a thinner SEI (with more organic components for the functionalized Si relative to the neat Si) based on XPS analysis of the cycled electrodes. The effect of binder was also investigated by comparing PAA with P84 (polyimide type), where an increased capacity is observed in the latter case.

2.
Sci Rep ; 12(1): 19010, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347903

RESUMEN

Additive manufacturing, also called 3D printing, has the potential to enable the development of flexible, wearable and customizable batteries of any shape, maximizing energy storage while also reducing dead-weight and volume. In this work, for the first time, three-dimensional complex electrode structures of high-energy density LiNi1/3Mn1/3Co1/3O2 (NMC 111) material are developed by means of a vat photopolymerization (VPP) process combined with an innovative precursor approach. This innovative approach involves the solubilization of metal precursor salts into a UV-photopolymerizable resin, so that detrimental light scattering and increased viscosity are minimized, followed by the in-situ synthesis of NMC 111 during thermal post-processing of the printed item. The absence of solid particles within the initial resin allows the production of smaller printed features that are crucial for 3D battery design. The formulation of the UV-photopolymerizable composite resin and 3D printing of complex structures, followed by an optimization of the thermal post-processing yielding NMC 111 is thoroughly described in this study. Based on these results, this work addresses one of the key aspects for 3D printed batteries via a precursor approach: the need for a compromise between electrochemical and mechanical performance in order to obtain fully functional 3D printed electrodes. In addition, it discusses the gaps that limit the multi-material 3D printing of batteries via the VPP process.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35575682

RESUMEN

The impact of the binding, solution structure, and solution dynamics of poly(vinylidene fluoride) (PVDF) with silicon on its performance as compared to traditional graphite and Li1.05Ni0.33Mn0.33Co0.33O2 (NMC) electrode materials was explored. Through refractive index (RI) measurements, the concentration of the binder adsorbed on the surface of electrode materials during electrode processing was determined to be less than half of the potentially available material resulting in excessive free binder in solution. Using ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS), it was found that PVDF forms a conformal coating over the entirety of the silicon particle. This is in direct contrast to graphite-PVDF and NMC-PVDF slurries, where PVDF only covers part of the graphite surface, and the PVDF chains make a network-like graphite-PVDF structure. Conversely, a thick layer of PVDF covers NMC particles, but the coating is porous, allowing for ion and electronic transport. The homogeneous coating of silicon breaks up percolation pathways, resulting in poor cycling performance of silicon materials as widely reported. These results indicate that the Si-PVDF interactions could be modified from a binder to a dispersant.

4.
Soft Matter ; 17(33): 7729-7742, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34342318

RESUMEN

The effect of UV curing and shearing on the structure and behavior of a polyimide (PI) binder as it disperses silicon particles in a battery electrode slurry was investigated. PI dispersant effectiveness increases with UV curing time, which controls the overall binder molecular weight. The shear force during electrode casting causes higher molecular weight PI to agglomerate, resulting in battery anodes with poorly dispersed Si particles that do not cycle well. It is hypothesized that when PI binder is added above a critical amount, it conformally coats the silicon particles and greatly impedes Li ion transport. There is an "interzonal region" for binder loading where it disperses silicon well and provides a coverage that facilitates Li transport through the anode material and into the silicon particles. These results have implications in ensuring reproducible electrode manufacturing and increasing cell performance by optimizing the PI structure and coordination with the silicon precursor.

5.
Inorg Chem ; 60(13): 10012-10021, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34143616

RESUMEN

In this work, we modified the reaction pathway to quickly (minutes) incorporate lithium and stabilize the ionic conducting garnet phase by decoupling the formation of a La-Zr-O network from the addition of lithium. To do this, we synthesized La2Zr2O7 (LZO) nanoparticles to which LiNO3 was added. This method is a departure from typical solid-state synthesis methods that require high-energy milling to promote mixing and intimate particle-particle contact and from sol-gel syntheses as a unique porous microstructure is obtained. We show that the reaction time is limited by the rate of nitrate decomposition and that this method produces a porous high-Li-ion-conducting cubic phase, within an hour, that may be used as a starting structure for a composite electrolyte.

6.
Chemphyschem ; 22(11): 1049-1058, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33848038

RESUMEN

This work probes the slurry architecture of a high silicon content electrode slurry with and without low molecular weight polymeric dispersants as a function of shear rate to mimic electrode casting conditions for poly(acrylic acid) (PAA) and lithium neutralized poly(acrylic acid) (LiPAA) based electrodes. Rheology coupled ultra-small angle neutron scattering (rheo-USANS) was used to examine the aggregation and agglomeration behavior of each slurry as well as the overall shape of the aggregates. The addition of dispersant has opposing effects on slurries made with PAA or LiPAA binder. With a dispersant, there are fewer aggregates and agglomerates in the PAA based silicon slurries, while LiPAA based silicon slurries become orders of magnitude more aggregated and agglomerated at all shear rates. The reorganization of the PAA and LiPAA binder in the presence of dispersant leads to a more homogeneous slurry and a more heterogeneous slurry, respectively. This reorganization ripples through to the cast electrode architecture and is reflected in the electrochemical cycling of these electrodes.

7.
ACS Appl Mater Interfaces ; 13(12): 14267-14274, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33724788

RESUMEN

X-ray photon correlation spectroscopy (XPCS) microrheology and conventional bulk rheology were performed on silica nanoparticle dispersions associated with battery electrolyte applications to probe the properties of these specific complex materials and to explore the utility of XPCS microrheology in characterizing nanoparticle dispersions. Sterically stabilized shear-thickening electrolytes were synthesized by grafting poly(methyl methacrylate) chains onto silica nanoparticles. Coated silica dispersions containing 5-30 wt % nanoparticles dispersed in propylene carbonate were studied. In general, both XPCS microrheology and conventional rheology showed that coated silica dispersions were more viscous at higher concentrations, as expected. The complex viscosity of coated silica dispersions showed shear-thinning behavior over the frequency range probed by XPCS measurements. However, measurements using conventional mechanical rheometry yielded a shear viscosity with weak shear-thickening behavior for dispersions with the highest concentration of 30% particles. Our results indicate that there is a critical concentration needed for shear-thickening behavior, as well as appropriate particle size and surface polymer chain length, for this class of nanoparticle-based electrolytes. The results of this study can provide insights for comparing XPCS microrheology and bulk rheology for related complex fluids and whether XPCS microrheology can capture expected macroscopic rheological properties by probing small-scale particle dynamics.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37719714

RESUMEN

This work explores the complex interplay between slurry aggregation, agglomeration, and conformation (i.e. shape) of poly(acrylic acid) (PAA) and lithiated poly(acrylic acid) (LiPAA) based silicon slurries as a function of shear rate, and the resulting slurry homogeneity. These values were measured by small angle neutron scattering (SANS) and rheology coupled ultra-small angle neutron scattering (rheo-USANS) at conditions relevant to battery electrode casting. Different binder solution preparation methods, either a ball mill (BM) process or a planetary centrifugal mixing (PCM) process, dramatically modify the resulting polymer dynamics and organization around a silicon material. This is due to the different energy profiles of mixing where the more violent and higher energy PCM causes extensive breakdown and reformation of the binder, which is now likely in a branched conformation, while the lower energy BM results in simply lower molecular weight linear polymers. The break down and reorganization of the polymer structure affects silicon slurry homogeneity, which affects subsequent electrode architecture.

9.
ACS Appl Mater Interfaces ; 12(50): 55954-55970, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33263996

RESUMEN

In this work, the spatial (in)homogeneity of aqueous processed silicon electrodes using standard poly(acrylic acid)-based binders and slurry preparation conditions is demonstrated. X-ray nanotomography shows segregation of materials into submicron-thick layers depending on the mixing method and starting binder molecular weights. Using a dispersant, or in situ production of dispersant from the cleavage of the binder into smaller molecular weight species, increases the resulting lateral homogeneity while drastically decreasing the vertical homogeneity as a result of sedimentation and separation due to gravitational forces. This data explains some of the variability in the literature with respect to silicon electrode performance and demonstrates two potential ways to improve slurry-based electrode fabrications.

10.
ACS Omega ; 5(25): 14968-14975, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32637770

RESUMEN

Metal oxide coatings have been reported to be an effective approach for stabilizing cathode interfaces, but the associated chemistry is unclear. In this work, thin films of TiO2, ZnO, and Cr2O3, which have different surface acidities/basicities, were used to modify the surface chemistry of LiNi0.6Mn0.2Co0.2O2 and study the acidity's role in the cathode/electrolyte interphase composition and impedance under high-voltage cycling (4.5 V vs Li/Li+). Cathodes with more acidic surfaces provided higher initial specific capacity and capacity retention with cycling. More basic surfaces had higher initial impedance and greater impedance growth with cycling. These differences appeared to depend on the degree of LiPF6 salt decomposition at the interface, which was related to acidity, with more neutral surfaces having a LiF/Li x PO y F z ratio close to unity, but basic surfaces had substantially more LiF. This chemistry was more significant than the cathode electrolyte interphase (CEI) thickness as the more acidic surfaces formed a thicker CEI than the basic surface, resulting in better capacity retention. These results suggest that the Brønsted acidity of cathodes directly influences electrolyte degradation, ion transport, and thus, cell lifetime.

11.
Appl Microbiol Biotechnol ; 102(19): 8329-8339, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30078139

RESUMEN

Sequential NanoFermentation (SNF) is a novel process which entails sparging microbially produced gas containing H2S from a primary reactor through a concentrated metal-acetate solution contained in a secondary reactor, thereby precipitating metallic sulfide nanoparticles (e.g., ZnS, CuS, or SnS). SNF holds an advantage over single reactor nanoparticle synthesis strategies, because it avoids exposing the microorganisms to high concentrations of toxic metal and sulfide ions. Also, by segregating the nanoparticle products from biological materials, SNF avoids coating nanoparticles with bioproducts that alter their desired properties. Herein, we report the properties of ZnS nanoparticles formed from SNF as compared with ones produced directly in a primary reactor (i.e., conventional NanoFermentation, or "CNF"), commercially available ZnS, and ZnS chemically synthesized by bubbling H2S gas through a Zn-acetate solution. The ZnS nanoparticles produced by SNF provided improved optical properties due to their smaller crystallite size, smaller overall particle sizes, reduced biotic surface coatings, and reduced structural defects. SNF still maintained the advantages of NanoFermentation technology over chemical synthesis including scalability, reproducibility, and lower hazardous waste burden.


Asunto(s)
Fermentación/fisiología , Nanopartículas del Metal/química , Sulfuros/química , Compuestos de Zinc/química , Gases/química , Tamaño de la Partícula , Reproducibilidad de los Resultados
12.
ACS Appl Mater Interfaces ; 10(37): 31804-31812, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30141901

RESUMEN

There is a consensus that savings of 1.0-1.4% of a country's gross domestic product may be achieved through lubrication R&D. Recent studies have shown great potential for using surface-functionalized nanoparticles (NPs) as lubricant additives to enhance lubricating performance. NPs were reported with ability of producing a low-friction antiwear tribofilm, usually 20-200 nm in thickness, on the contact surface. In contrast, this study reports an unexpected 10 times thicker (2-3 µm) tribofilm formed by dodecanethiol-modified palladium NPs (core size: 2-4 nm) in boundary lubrication of a steel-cast iron contact. Adding 0.5-1.0 wt % such NPs to a lubricating oil resulted in significant reductions in friction and wear by up to 40 and 97%, respectively. Further investigation suggested that the PdNP core primarily was responsible for the improvement in both friction and wear, whereas the thiolate ligand only contributed to the wear protection but had little impact on the friction behavior. In addition, unlike most previously reported tribofilms that contain a substantial amount of metal oxides, this PdNP-induced tribofilm is clearly dominated by Pd/S compounds, as revealed by nanostructural examination and chemical analysis. Such a ultrathick tribofilm with unique composition is believed to be responsible for the superior lubricating behavior.

13.
ACS Appl Mater Interfaces ; 10(11): 9424-9434, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29499109

RESUMEN

We present a method to prepare shear thickening electrolytes consisting of silica nanoparticles in conventional liquid electrolytes with limited flocculation. These electrolytes rapidly and reversibly stiffen to solidlike behaviors in the presence of external shear or high impact, which is promising for improved lithium ion battery safety, especially in electric vehicles. However, in initial chemistries the silica nanoparticles aggregate and/or sediment in solution over time. Here, we demonstrate steric stabilization of silica colloids in conventional liquid electrolyte via surface-tethered PMMA brushes, synthesized via surface-initiated atom transfer radical polymerization. The PMMA increases the magnitude of the shear thickening response, compared to the uncoated particles, from 0.311 to 2.25 Pa s. Ultrasmall-angle neutron scattering revealed a reduction in aggregation of PMMA-coated silica nanoparticles compared to bare silica nanoparticles in solution under shear and at rest, suggesting good stabilization. Conductivity tests of shear thickening electrolytes (30 wt % solids in electrolyte) at rest were performed with interdigitated electrodes positioned near the meniscus of electrolytes over the course of 24 h to track supernatant formation. Conductivity of electrolytes with bare silica increased from 10.1 to 11.6 mS cm-1 over 24 h due to flocculation. In contrast, conductivity of electrolytes with PMMA-coated silica remained stable at 6.1 mS cm-1 over the same time period, suggesting good colloid stability.

14.
Appl Microbiol Biotechnol ; 100(18): 7921-31, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27118014

RESUMEN

The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.


Asunto(s)
Nanopartículas/metabolismo , Sulfuros/metabolismo , Thermoanaerobacter/metabolismo , Compuestos de Zinc/metabolismo , Anaerobiosis , Concentración de Iones de Hidrógeno
15.
Nanotechnology ; 26(32): 325602, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26207018

RESUMEN

Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.


Asunto(s)
Bacterias Anaerobias , Nanopartículas del Metal/microbiología , Puntos Cuánticos/microbiología , Aminas/química , Compuestos de Cadmio/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Ácido Oléico/química , Tamaño de la Partícula , Puntos Cuánticos/química , Puntos Cuánticos/ultraestructura , Sulfuros/química , Propiedades de Superficie , Compuestos de Estaño/química , Compuestos de Zinc/química
16.
Dalton Trans ; 44(20): 9353-8, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25912071

RESUMEN

Herein we report on a general approach to delaminate multi-layered MXenes using an organic base to induce swelling that in turn weakens the bonds between the MX layers. Simple agitation or mild sonication of the swollen MXene in water resulted in the large-scale delamination of the MXene layers. The delamination method is demonstrated for vanadium carbide and titanium carbonitride MXenes.

17.
Acta Biomater ; 10(10): 4474-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24932768

RESUMEN

A series of semiconducting zinc sulfide (ZnS) nanoparticles were scalably, reproducibly, controllably and economically synthesized with anaerobic metal-reducing Thermoanaerobacter species. These bacteria reduced partially oxidized sulfur sources to sulfides that extracellularly and thermodynamically incorporated with zinc ions to produce sparingly soluble ZnS nanoparticles with ∼5nm crystallites at yields of ∼5gl(-1)month(-1). A predominant sphalerite formation was facilitated by rapid precipitation kinetics, a low cation/anion ratio and a higher zinc concentration compared to background to produce a naturally occurring hexagonal form at the low temperature, and/or water adsorption in aqueous conditions. The sphalerite ZnS nanoparticles exhibited narrow size distribution, high emission intensity and few native defects. Scale-up and emission tunability using copper doping were confirmed spectroscopically. Surface characterization was determined using Fourier transform infrared and X-ray photoelectron spectroscopies, which confirmed amino acid as proteins and bacterial fermentation end products not only maintaining a nano-dimensional average crystallite size, but also increasing aggregation. The application of ZnS nanoparticle ink to a functional thin film was successfully tested for potential future applications.


Asunto(s)
Membranas Artificiales , Nanopartículas/química , Semiconductores , Sulfuros/química , Thermoanaerobacter/química , Compuestos de Zinc/química , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Thermoanaerobacter/metabolismo
18.
J Colloid Interface Sci ; 405: 118-24, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23764234

RESUMEN

Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW=2000 g mol(-1) and 5.0 wt% PEI with MW=10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity.

19.
Langmuir ; 28(8): 3783-90, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22292836

RESUMEN

Addition of dispersants to aqueous based lithium-ion battery electrode formulations containing LiFePO(4) is critical to obtaining a stable suspension. The resulting colloidal suspensions enable dramatically improved coating deposition when processing electrodes. This research examines the colloidal chemistry modifications based on polyethyleneimine (PEI) addition and dispersion characterization required to produce high quality electrode formulations and coatings for LiFePO(4) active cathode material. The isoelectric point, a key parameter in characterizing colloidal dispersion stability, of LiFePO(4) and super P C45 were determined to be pH = 4.3 and 3.4, respectively. PEI, a cationic surfactant, was found to be an effective dispersant. It is demonstrated that 1.0 wt % and 0.5 wt % PEI were required to stabilize the LiFePO(4) and super P C45 suspension, respectively. LiFePO(4) cathode suspensions with 1.5 wt % PEI demonstrated the best dispersibility of all components, as evidenced by viscosity and agglomerate size of the suspensions and elemental distribution within dry cathodes. The addition of PEI significantly improved the LiFePO(4) performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...