Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Phys Chem Au ; 3(2): 157-166, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36968445

RESUMEN

The conformational isomerism of disubstituted ethanes is a well-known concept that is part of every chemistry curriculum. Due to the species' simplicity, studying the (free) energy difference between the gauche and anti isomers has been the testing ground of experimental and computational techniques, such as Raman and IR spectroscopy, quantum chemistry, and atomistic simulations. While students normally receive formal training in spectroscopic techniques during their early undergraduate years, computational methods often receive less attention. In this work, we revisit the conformational isomerism of 1,2-dichloroethane and 1,2-dibromoethane and design a hybrid computational and experimental laboratory for our undergraduate chemistry curriculum with a focus on introducing computational techniques as a complementary research tool to experimentation. We show how commonly available Raman spectrometers and atomistic simulations performed on desktop computers can be combined to study the conformational isomerism of disubstituted ethanes while discussing the advantages and limitations of the different approaches.

2.
J Am Chem Soc ; 144(25): 11189-11202, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35704840

RESUMEN

Photoredox catalysts are primarily selected based on ground and excited state properties, but their activity is also intrinsically tied to the nature of their reduced (or oxidized) intermediates. Catalyst reactivity often necessitates an inherent instability, thus these intermediates represent a mechanistic turning point that affords either product formation or side-reactions. In this work, we explore the scope of a previously demonstrated side-reaction that partially saturates one pyridine ring of the ancillary ligand in heteroleptic iridium(III) complexes. Using high-throughput synthesis and screening under photochemical conditions, we identified different chemical pathways, ultimately governed by ligand composition. The ancillary ligand was the key factor that determined photochemical stability. Following photoinitiated electron transfer from a sacrificial tertiary amine, the reduced intermediate of complexes containing 1,10-phenanthroline derivatives exhibited long-term stability. In contrast, complexes containing 2,2'-bipyridines were highly susceptible to hydrogen atom transfer and ancillary ligand modification. Detailed characterization of selected complexes before and after transformation showed differing effects on the ground and excited state reduction potentials dependent on the nature of the cyclometalating ligands and excited states. The implications of catalyst stability and reactivity in chemical synthesis was demonstrated in a model photoredox reaction.


Asunto(s)
Iridio , Fenantrolinas , Hidrógeno , Iridio/química , Ligandos
3.
J Phys Chem B ; 126(1): 197-216, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34967634

RESUMEN

The mechanism by which cryosolvents such as alcohols modify and penetrate cell membranes as a function of their concentration and hydration state remains poorly understood. We conducted molecular dynamics simulations of 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayers in the presence of aqueous solutions of four common penetrating hydroxylated cryosolvents (methanol, ethylene glycol, propylene glycol, and glycerol) at varying concentration ranges and across three different hydration states. All cryosolvents were found to preferentially replace water at the bilayer interface, and a reduction in hydration state correlates with a higher proportion of cryosolvent at the interface for relative concentrations. Minor differences in chemical structure had a profound effect on cryosolvent-membrane interactions, as the lone methyl groups of methanol and propylene glycol enhanced their membrane localization and penetration, but with increasing concentrations acted to destabilize the membrane structure in a process heightened at higher hydration states. By contrast, ethylene glycol and glycerol promoted and retained membrane structural integrity by forming hydrogen-bonded lipid bridges via distally located hydroxyl groups. Glycerol exhibited the highest capacity to cross-link lipids at relative concentrations, as well as promoted a bilayer structure consistent with a fully hydrated bilayer in the absence of cryosolvent for all hydration states investigated.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Membrana Celular , Propilenglicol , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...