Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(3): 545-557, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38235557

RESUMEN

Trauma currently accounts for 10% of the total global burden of disease and over 5 million deaths per year, making it a leading cause of morbidity and mortality worldwide. Although recent advances in early resuscitation have improved early survival from critical injury, the mortality rate in patients with major hemorrhage approaches 50% even in mature trauma systems. A major determinant of clinical outcomes from a major injury is a complex, dynamic hemostatic landscape. Critically injured patients frequently present to the emergency department with an acute traumatic coagulopathy that increases mortality from bleeding, yet, within 48 to 72 hours after injury will switch from a hypocoagulable to a hypercoagulable state with increased risk of venous thromboembolism and multiple organ dysfunction. This review will focus on the role of platelets in these processes. As effectors of hemostasis and thrombosis, they are central to each phase of recovery from injury, and our understanding of postinjury platelet biology has dramatically advanced over the past decade. This review describes our current knowledge of the changes in platelet behavior that occur following major trauma, the mechanisms by which these changes develop, and the implications for clinical outcomes. Importantly, supported by research in other disease settings, this review also reflects the emerging role of thromboinflammation in trauma including cross talk between platelets, innate immune cells, and coagulation. We also address the unresolved questions and significant knowledge gaps that remain, and finally highlight areas that with the further study will help deliver further improvements in trauma care.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Trombosis , Humanos , Inflamación/complicaciones , Trombosis/complicaciones , Hemostasis , Hemorragia/etiología , Plaquetas
2.
Arterioscler Thromb Vasc Biol ; 44(1): 271-286, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823267

RESUMEN

BACKGROUND: Prostacyclin is a fundamental signaling pathway traditionally associated with the cardiovascular system and protection against thrombosis but which also has regulatory functions in fibrosis, proliferation, and immunity. Prevailing dogma states that prostacyclin is principally derived from vascular endothelium, although it is known that other cells can also synthesize it. However, the role of nonendothelial sources in prostacyclin production has not been systematically evaluated resulting in an underappreciation of their importance relative to better characterized endothelial sources. METHODS: To address this, we have used novel endothelial cell-specific and fibroblast-specific COX (cyclo-oxygenase) and prostacyclin synthase knockout mice and cells freshly isolated from mouse and human lung tissue. We have assessed prostacyclin release by immunoassay and thrombosis in vivo using an FeCl3-induced carotid artery injury model. RESULTS: We found that in arteries, endothelial cells are the main source of prostacyclin but that in the lung, and other tissues, prostacyclin production occurs largely independently of endothelial and vascular smooth muscle cells. Instead, in mouse and human lung, prostacyclin production was strongly associated with fibroblasts. By comparison, microvascular endothelial cells from the lung showed weak prostacyclin synthetic capacity compared with those isolated from large arteries. Prostacyclin derived from fibroblasts and other nonendothelial sources was seen to contribute to antithrombotic protection. CONCLUSIONS: These observations define a new paradigm in prostacyclin biology in which fibroblast/nonendothelial-derived prostacyclin works in parallel with endothelium-derived prostanoids to control thrombotic risk and potentially a broad range of other biology. Although generation of prostacyclin by fibroblasts has been shown previously, the scale and systemic activity was unappreciated. As such, this represents a basic change in our understanding and may provide new insight into how diseases of the lung result in cardiovascular risk.


Asunto(s)
Epoprostenol , Trombosis , Ratones , Humanos , Animales , Fibrinolíticos , Células Endoteliales/metabolismo , Prostaglandinas I/metabolismo , Prostaglandinas I/farmacología , Endotelio Vascular/metabolismo , Ratones Noqueados , Fibroblastos/metabolismo , Trombosis/genética , Trombosis/prevención & control , Trombosis/metabolismo
3.
Eur Respir J ; 63(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123239

RESUMEN

BACKGROUND: Short-term studies suggest that dietary nitrate (NO3 -) supplementation may improve the cardiovascular risk profile, lowering blood pressure (BP) and enhancing endothelial function. It is not clear if these beneficial effects are sustained and whether they apply in people with COPD, who have a worse cardiovascular profile than those without COPD. Nitrate-rich beetroot juice (NR-BRJ) is a convenient dietary source of nitrate. METHODS: The ON-BC trial was a randomised, double-blind, placebo-controlled parallel group study in stable COPD patients with home systolic BP (SBP) measurement ≥130 mmHg. Participants were randomly allocated (1:1) using computer-generated, block randomisation to either 70 mL NR-BRJ (400 mg NO3 -) (n=40) or an otherwise identical nitrate-depleted placebo juice (0 mg NO3 -) (n=41), once daily for 12 weeks. The primary end-point was between-group change in home SBP measurement. Secondary outcomes included change in 6-min walk distance (6MWD) and measures of endothelial function (reactive hyperaemia index (RHI) and augmentation index normalised to a heart rate of 75 beats·min-1 (AIx75)) using an EndoPAT device. Plasma nitrate and platelet function were also measured. RESULTS: Compared with placebo, active treatment lowered SBP (Hodges-Lehmann treatment effect -4.5 (95% CI -5.9- -3.0) mmHg), and improved 6MWD (30.0 (95% CI 15.7-44.2) m; p<0.001), RHI (0.34 (95% CI 0.03-0.63); p=0.03) and AIx75 (-7.61% (95% CI -14.3- -0.95%); p=0.026). CONCLUSIONS: In people with COPD, prolonged dietary nitrate supplementation in the form of beetroot juice produces a sustained reduction in BP, associated with an improvement in endothelial function and exercise capacity.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Nitratos/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/tratamiento farmacológico , Suplementos Dietéticos , Factores de Riesgo , Presión Sanguínea , Antioxidantes , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Método Doble Ciego , Estudios Cruzados
4.
J Thromb Haemost ; 22(4): 926-935, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38101576

RESUMEN

BACKGROUND: Major trauma results in dramatic changes in platelet behavior. Newly formed platelets are more reactive than older platelets, but their contributions to hemostasis and thrombosis after severe injury have not been previously evaluated. OBJECTIVES: To determine how immature platelet metrics and plasma thrombopoietin relate to clinical outcomes after major injury. METHODS: A prospective observational cohort study was performed in adult trauma patients. Platelet counts and the immature platelet fraction (IPF) were measured at admission and 24 hours, 72 hours, and 7 days after injury. Thromboelastometry was performed at admission. Plasma thrombopoietin, c-Mpl, and GPIbα were quantified in a separate cohort. The primary outcome was in-hospital mortality; secondary outcomes were venous thromboembolic events and multiple organ dysfunction syndrome (MODS). RESULTS: On admission, immature platelet counts (IPCs) were significantly lower in nonsurvivors (n = 40) than in survivors (n = 236; 7.3 × 109/L vs 10.6 × 109/L; P = .009), but IPF did not differ. Similarly, impaired platelet function on thromboelastometry was associated with lower admission IPC (9.1 × 109/L vs 11.9 × 109/L; P < .001). However, at later time points, we observed significantly higher IPF and IPC in patients who developed venous thromboembolism (21.0 × 109/L vs 11.1 × 109/L; P = .02) and prolonged MODS (20.9 × 109/L vs 11 × 109/L; P = .003) than in those who did not develop complications. Plasma thrombopoietin levels at admission were significantly lower in nonsurvivors (P < .001), in patients with MODS (P < .001), and in those who developed venous thromboembolism (P = .04). CONCLUSION: Lower levels of immature platelets in the acute phase after major injury are associated with increased mortality, whereas higher immature platelet levels at later time points may predispose to thrombosis and MODS.


Asunto(s)
Trombosis , Tromboembolia Venosa , Adulto , Humanos , Estudios Prospectivos , Trombopoyetina , Tromboembolia Venosa/diagnóstico , Plaquetas
6.
Platelets ; 34(1): 2200838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37070955

RESUMEN

Research into the natural aging process of platelets has garnered much research interest in recent years, and there have long been associations drawn between the proportion of newly formed platelets in the circulation and the risk of thrombosis. However, these observations have largely been demonstrated in patient groups in which there may be underlying systemic changes that effect platelet function. Recent advances in technology have allowed in-depth analysis of differently aged platelets isolated from the peripheral blood of healthy individuals and have demonstrated that aged platelets, often referred to as senescent platelets, undergo extensive changes in the transcriptome and proteome. Ultimately, these changes result in platelets whose functions have deteriorated such that they cannot partake in hemostatic responses to the same extent as newly formed platelets. Here, we review transcriptomic and proteomic research in platelet aging in the context of health and how this research sheds light upon alterations in platelet structure and function.


Platelets normally last within the human circulation for approximately 10 days, however there are a number of diseases in which this life span is notably reduced. People who have platelets with such reduced lifespans have higher risks of heart attacks and strokes and reduced responsiveness to standard anti-platelet drugs. Research in recent years has aimed to understand the age-related changes that occur within platelets as they circulate in the bloodstream. In this review article, the authors provide a summary of the changes that occur during the natural aging process of platelets in healthy people, highlighting reductions in the levels of RNA and proteins. Despite these general reductions in their own RNA and proteins, research has shown that as platelets circulate they take up other RNA transcripts and proteins from the bloodstream, and this too seems a hallmark of platelet aging. The authors also discuss age-related declines in various aspects of platelet function which renders them less effective participants in the formation of blood clots.


Asunto(s)
Proteoma , Transcriptoma , Humanos , Anciano , Proteómica , Plaquetas/fisiología , Envejecimiento/genética
7.
Thromb Res ; 231: 214-222, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36587993

RESUMEN

Platelet ageing is an area of research which has gained much interest in recent years. Newly formed platelets, often referred to as reticulated platelets, young platelets or immature platelets, are defined as RNA-enriched and have long been thought to be hyper-reactive. This latter view is largely rooted in associations and observations in patient groups with shortened platelet half-lives who often present with increased proportions of newly formed platelets. Evidence from such groups suggests that an increased proportion of newly formed platelets is associated with an increased risk of thrombotic events and a reduced effectiveness of standard anti-platelet therapies. Whilst research has highlighted the existence of platelet subpopulations based on function, size and age within patient groups, the common intrinsic changes which occur as platelets age within the circulation are only just being explored. By understanding the changes that occur during the natural ageing processes of platelets, we may be able to identify the triggers for alterations in platelet life span and platelet reactivity. Here we review research on platelet ageing in the context of health and disease, paying particular attention to the experimental approaches taken and the robustness of conclusions that can be drawn.


Asunto(s)
Envejecimiento , Plaquetas , Humanos
8.
Blood Adv ; 6(23): 6028-6038, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36037520

RESUMEN

The proportion of young platelets, also known as newly formed or reticulated, within the overall platelet population has been clinically correlated with adverse cardiovascular outcomes. However, our understanding of this is incomplete because of limitations in the technical approaches available to study platelets of different ages. In this study, we have developed and validated an in vivo temporal labeling approach using injectable fluorescent antiplatelet antibodies to subdivide platelets by age and assess differences in functional and molecular characteristics. With this approach, we found that young platelets (<24 hours old) in comparison with older platelets respond to stimuli with greater calcium flux and degranulation and contribute more to the formation of thrombi in vitro and in vivo. Sequential sampling confirmed this altered functionality to be independent of platelet size, with distribution of sizes of tracked platelets commensurate with the global platelet population throughout their 5-day lifespan in the circulation. The age-associated decrease in thrombotic function was accompanied by significant decreases in the surface expression of GPVI and CD31 (PECAM-1) and an increase in CD9. Platelet messenger RNA (mRNA) content also decreased with age but at different rates for individual mRNAs indicating apparent conservation of those encoding granule proteins. Our pulse-chase-type approach to define circulating platelet age has allowed timely reexamination of commonly held beliefs regarding size and reactivity of young platelets while providing novel insights into the temporal regulation of receptor and protein expression. Overall, future application of this validated tool will inform age-based platelet heterogeneity in physiology and disease.


Asunto(s)
Plaquetas , Trombosis , Ratones , Animales , Plaquetas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Gránulos Citoplasmáticos , Expresión Génica , Trombosis/metabolismo
9.
Pathology ; 54(6): 746-754, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35750510

RESUMEN

Identification of disordered platelet function is important to guide peri-operative bleeding management as well as long term treatment and prognostic strategies in individuals with platelet bleeding disorders. Light transmission aggregometry (LTA), the current gold standard diagnostic test of platelet function is a time consuming technique almost exclusively performed in specialised laboratories and almost universally unavailable in regional centres in Australia, where there is an unmet need for access to specialised platelet function diagnostic services. 96-well plate-based aggregometry (Optimul, UK), has been utilised in research laboratories as a novel platform to investigate platelet function. We evaluated the Optimul assay at two centres in Australia, one regional and one tertiary metropolitan, to assess its feasibility as a screening test applicable to remote regional centres. Concentration-response curves were established from 45 healthy volunteers at the participating regional hospital and from 31 healthy volunteers at the tertiary institution. Optimul successfully detected anti-platelet effects in individuals taking aspirin (n=4), NSAID (n=2), clopidogrel (n=2) and dual therapy with aspirin and clopidogrel (n=1). When tested in parallel to LTA in individuals referred for the evaluation of abnormal bleeding symptoms there was overall a very good level of agreement between Optimul and LTA [Cohen's kappa (k2)=0.84], supporting its role as a useful screening tool in the assessment of platelet function. Optimul assay performance was quick and the methodology simple, requiring no specialised training or resources to be implemented at either the regional or metropolitan laboratory. Widespread implementation, particularly in regional laboratories within Australia where specialised platelet function testing is unavailable, has the potential to drastically improve the inequity of access to such services.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Agregación Plaquetaria , Antiinflamatorios no Esteroideos , Aspirina/farmacología , Trastornos de las Plaquetas Sanguíneas/diagnóstico , Clopidogrel/farmacología , Humanos , Proyectos Piloto , Pruebas de Función Plaquetaria/métodos
10.
Arterioscler Thromb Vasc Biol ; 42(1): 49-62, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34809447

RESUMEN

OBJECTIVE: Platelets are central to acute myocardial infarction (MI). How the platelet proteome is altered during MI is unknown. We sought to describe changes in the platelet proteome during MI and identify corresponding functional consequences. Approach and Results: Platelets from patients experiencing ST-segment-elevation MI (STEMI) before and 3 days after treatment (n=30) and matched patients with severe stable coronary artery disease before and 3 days after coronary artery bypass grafting (n=25) underwent quantitative proteomic analysis. Elevations in the proteins S100A8 and S100A9 were detected at the time of STEMI compared with stable coronary artery disease (S100A8: FC, 2.00; false discovery rate, 0.05; S100A9: FC, 2.28; false discovery rate, 0.005). During STEMI, only S100A8 mRNA and protein levels were correlated in platelets (R=0.46, P=0.012). To determine whether de novo protein synthesis occurs, activated platelets were incubated with 13C-labeled amino acids for 24 hours and analyzed by mass spectrometry. No incorporation was confidently detected. Platelet S100A8 and S100A9 was strongly correlated with neutrophil abundance at the time of STEMI. When isolated platelets and neutrophils were coincubated under quiescent and activated conditions, release of S100A8 from neutrophils resulted in uptake of S100A8 by platelets. Neutrophils released S100A8/A9 as free heterodimer, rather than in vesicles or extracellular traps. In the community-based Bruneck study (n=338), plasma S100A8/A9 was inversely associated with platelet reactivity-an effect abrogated by aspirin. CONCLUSIONS: Leukocyte-to-platelet protein transfer may occur in a thromboinflammatory environment such as STEMI. Plasma S100A8/A9 was negatively associated with platelet reactivity. These findings highlight neutrophils as potential modifiers for thrombotic therapies in coronary artery disease.


Asunto(s)
Plaquetas/metabolismo , Calgranulina A/sangre , Calgranulina B/sangre , Activación Neutrófila , Neutrófilos/metabolismo , Activación Plaquetaria , Proteoma , Infarto del Miocardio con Elevación del ST/sangre , Anciano , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Proteómica , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/terapia , Factores de Tiempo
11.
J Thromb Haemost ; 19(12): 3095-3112, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34390534

RESUMEN

BACKGROUND: Platelets circulate in the blood of healthy individuals for approximately 7-10 days regulated by finely balanced processes of production and destruction. As platelets are anucleate we reasoned that their protein composition would change as they age and that this change would be linked to alterations in structure and function. OBJECTIVE: To isolate platelets of different ages from healthy individuals to test the hypothesis that changes in protein content cause alterations in platelet structure and function. METHODS: Platelets were separated according to thiazole orange fluorescence intensity as a surrogate indicator of mRNA content and so a marker of platelet age and then subjected to proteomics, imaging, and functional assays to produce an in-depth analysis of platelet composition and function. RESULTS: Total protein content was 45 ± 5% lower in old platelets compared to young platelets. Predictive proteomic pathway analysis identified associations with 28 biological processes, notably higher hemostasis in young platelets whilst apoptosis and senescence were higher in old platelets. Further studies confirmed platelet ageing was linked to a decrease in cytoskeletal protein and associated capability to spread and adhere, a reduction in mitochondria number, and lower calcium dynamics and granule secretion. CONCLUSIONS: Our findings demonstrate changes in protein content are linked to alterations in function as platelets age. This work delineates physical and functional changes in platelets as they age and serves as a base to examine differences associated with altered mean age of platelet populations in conditions such as immune thrombocytopenia and diabetes.


Asunto(s)
Proteoma , Trombocitopenia , Plaquetas , Hemostasis , Humanos , Proteómica
12.
Br J Pharmacol ; 178(23): 4758-4771, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34383973

RESUMEN

BACKGROUND AND PURPOSE: P2Y12 receptor antagonists reduce platelet aggregation and the incidence of arterial thrombosis. Adenosine signalling in platelets directly affects cyclic nucleotide tone, which we have shown to have a synergistic relationship with P2Y12 inhibition. Several studies suggest that ticagrelor inhibits erythrocyte uptake of adenosine and that this could also contribute to its antiplatelet effects. We therefore examined the effects on platelet activation of adenosine signalling activators in combination with the P2Y12 receptor antagonists ticagrelor and prasugrel. EXPERIMENTAL APPROACH: Human washed platelets, platelet-rich plasma and whole blood were used to test the interactions between ticagrelor or prasugrel and adenosine or 5'-N-ethylcarboxamidoadenosine (NECA). Platelet reactivity to thrombin, protease-activated receptor 1 (PAR-1) activation or collagen was assessed by a combination of 96-well plate aggregometry, light transmission aggregometry, whole blood aggregometry, ATP release assay and levels of cAMP. KEY RESULTS: The inhibitory effects of ticagrelor and prasugrel on platelet aggregation and ATP release were enhanced in the presence of adenosine or NECA. Isobolographic analysis indicated a powerful synergy between P2Y12 receptor inhibition and adenosine signalling activators. Increased levels of cAMP in platelets were also observed. In all cases, ticagrelor showed similar synergistic effects on platelet inhibition as prasugrel in the presence of adenosine or NECA. CONCLUSION AND IMPLICATIONS: These results indicate that P2Y12 antagonists have a synergistic relationship with adenosine signalling and that their efficacy may depend partly upon the presence of endogenous adenosine. This effect was common for prasugrel and ticagrelor despite reports of differences in their effects upon adenosine reuptake.


Asunto(s)
Adenosina , Plaquetas , Antagonistas del Receptor Purinérgico P2Y , Adenosina/metabolismo , Plaquetas/efectos de los fármacos , Humanos , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Clorhidrato de Prasugrel/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12
13.
Pharmacol Ther ; 217: 107624, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32640277

RESUMEN

Cyclooxygenase (COX)-1 and COX-2 are centrally important enzymes within the cardiovascular system with a range of diverse, sometimes opposing, functions. Through the production of thromboxane, COX in platelets is a pro-thrombotic enzyme. By contrast, through the production of prostacyclin, COX in endothelial cells is antithrombotic and in the kidney regulates renal function and blood pressure. Drug inhibition of COX within the cardiovascular system is important for both therapeutic intervention with low dose aspirin and for the manifestation of side effects caused by nonsteroidal anti-inflammatory drugs. This review focuses on the role that COX enzymes and drugs that act on COX pathways have within the cardiovascular system and provides an in-depth resource covering COX biology and pharmacology. The review goes on to consider the role of COX in both discrete cardiovascular locations and in associated organs that contribute to cardiovascular health. We discuss the importance of, and strategies to manipulate the thromboxane: prostacyclin balance. Finally within this review the authors discuss testable COX-2-hypotheses intended to stimulate debate and facilitate future research and therapeutic opportunities within the field.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Estabilidad de Medicamentos , Células Endoteliales/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Riñón/efectos de los fármacos , Riñón/metabolismo , Prostaglandinas/metabolismo , Temperatura , Tromboxanos/metabolismo , Timo/efectos de los fármacos , Timo/metabolismo
14.
Blood Adv ; 4(12): 2623-2630, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32556282

RESUMEN

Trauma-induced coagulopathy (TIC) is a complex, multifactorial failure of hemostasis that occurs in 25% of severely injured patients and results in a fourfold higher mortality. However, the role of platelets in this state remains poorly understood. We set out to identify molecular changes that may underpin platelet dysfunction after major injury and to determine how they relate to coagulopathy and outcome. We performed a range of hemostatic and platelet-specific studies in blood samples obtained from critically injured patients within 2 hours of injury and collected prospective data on patient characteristics and clinical outcomes. We observed that, although platelet counts were preserved above critical levels, circulating platelets sampled from trauma patients exhibited a profoundly reduced response to both collagen and the selective glycoprotein VI (GPVI) agonist collagen-related peptide, compared with those from healthy volunteers. These responses correlated closely with overall clot strength and mortality. Surface expression of the collagen receptors GPIbα and GPVI was reduced on circulating platelets in trauma patients, with increased levels of the shed ectodomain fragment of GPVI detectable in plasma. Levels of shed GPVI were highest in patients with more severe injuries and TIC. Collectively, these observations demonstrate that platelets experience a loss of GPVI and GPIbα after severe injury and translate into a reduction in the responsiveness of platelets during active hemorrhage. In turn, they are associated with reduced hemostatic competence and increased mortality. Targeting proteolytic shedding of platelet receptors is a potential therapeutic strategy for maintaining hemostatic competence in bleeding and improving the efficacy of platelet transfusions.


Asunto(s)
Plaquetas , Transfusión de Plaquetas , Hemorragia/etiología , Hemostasis , Humanos , Estudios Prospectivos
15.
FASEB J ; 34(8): 10027-10040, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592197

RESUMEN

Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2 , a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2 , prostaglandin (PG) F2α , 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2 . Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.


Asunto(s)
Aspirina/farmacología , Plaquetas/metabolismo , Ciclooxigenasa 1/fisiología , Inhibidores de la Ciclooxigenasa/farmacología , Eicosanoides/metabolismo , Proteínas de la Membrana/fisiología , Trombosis/metabolismo , Animales , Ácido Araquidónico/administración & dosificación , Plaquetas/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trombosis/tratamiento farmacológico , Trombosis/patología
17.
J Thromb Haemost ; 18(7): 1705-1713, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278335

RESUMEN

BACKGROUND: Endothelium-derived prostacyclin and nitric oxide elevate platelet cyclic nucleotide levels and maintain quiescence. We previously demonstrated that a synergistic relationship exists between cyclic nucleotides and P2Y12 receptor inhibition. A number of clinically approved drug classes can modulate cyclic nucleotide tone in platelets including activators of NO-sensitive guanylyl cyclase (GC) and phosphodiesterase (PDE) inhibitors. However, the doses required to inhibit platelets produce numerous side effects including headache. OBJECTIVE: We investigated using GC-activators in combination with P2Y12 receptor antagonists as a way to selectively amplify the anti-thrombotic effect of both drugs. METHODS: In vitro light transmission aggregation and platelet adhesion under flow were performed on washed platelets and platelet rich plasma. Aggregation in whole blood and a ferric chloride-induced arterial thrombosis model were also performed. RESULTS: The GC-activator BAY-70 potentiated the action of the P2Y12 receptor inhibitor prasugrel active metabolite in aggregation and adhesion studies and was associated with raised intra-platelet cyclic nucleotide levels. Furthermore, mice administered sub-maximal doses of the GC activator cinaciguat together with the PDE inhibitor dipyridamole and prasugrel, showed significant inhibition of ex vivo platelet aggregation and significantly reduced in vivo arterial thrombosis in response to injury without alteration in basal carotid artery blood flow. CONCLUSIONS: Using in vitro, ex vivo, and in vivo functional studies, we show that low dose GC activators synergize with P2Y12 inhibition to produce powerful anti-platelet effects without altering blood flow. Therefore, modulation of intra-platelet cyclic nucleotide levels alongside P2Y12 inhibition can provide a strong, focused anti-thrombotic regimen while minimizing vasodilator side effects.


Asunto(s)
Plaquetas , Antagonistas del Receptor Purinérgico P2Y , Animales , Ratones , Nucleótidos Cíclicos/farmacología , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Clorhidrato de Prasugrel/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12
18.
Circ Res ; 125(9): 847-854, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31510878

RESUMEN

RATIONALE: Endothelial cells (ECs) and platelets, which respectively produce antithrombotic prostacyclin and prothrombotic thromboxane A2, both express COX1 (cyclooxygenase1). Consequently, there has been no way to delineate any antithrombotic role for COX1-derived prostacyclin from the prothrombotic effects of platelet COX1. By contrast, an antithrombotic role for COX2, which is absent in platelets, is straightforward to demonstrate. This has resulted in an incomplete understanding of the relative importance of COX1 versus COX2 in prostacyclin production and antithrombotic protection in vivo. OBJECTIVE: We sought to identify the role, if any, of COX1-derived prostacyclin in antithrombotic protection in vivo and compare this to the established protective role of COX2. METHODS AND RESULTS: We developed vascular-specific COX1 knockout mice and studied them alongside endothelial-specific COX2 knockout mice. COX1 immunoreactivity and prostacyclin production were primarily associated with the endothelial layer of aortae; freshly isolated aortic ECs released >10-fold more prostacyclin than smooth muscle cells. Moreover, aortic prostacyclin production, the ability of aortic rings to inhibit platelet aggregation and plasma prostacyclin levels were reduced when COX1 was knocked out in ECs but not in smooth muscle cells. When thrombosis was measured in vivo after FeCl3 carotid artery injury, endothelial COX1 deletion accelerated thrombosis to a similar extent as prostacyclin receptor blockade. However, this effect was lost when COX1 was deleted from both ECs and platelets. Deletion of COX2 from ECs also resulted in a prothrombotic phenotype that was independent of local vascular prostacyclin production. CONCLUSIONS: These data demonstrate for the first time that, in healthy animals, endothelial COX1 provides an essential antithrombotic tone, which is masked when COX1 activity is lost in both ECs and platelets. These results help us define a new 2-component paradigm wherein thrombotic tone is regulated by both COX1 and COX2 through complementary but mechanistically distinct pathways.


Asunto(s)
Ciclooxigenasa 1/deficiencia , Endotelio Vascular/metabolismo , Epoprostenol/metabolismo , Fibrinolíticos/metabolismo , Eliminación de Gen , Proteínas de la Membrana/deficiencia , Agregación Plaquetaria/fisiología , Animales , Aorta/metabolismo , Ciclooxigenasa 1/genética , Epoprostenol/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos
19.
Proc Natl Acad Sci U S A ; 116(35): 17444-17449, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405966

RESUMEN

Trauma hemorrhage is a leading cause of death and disability worldwide. Platelets are fundamental to primary hemostasis, but become profoundly dysfunctional in critically injured patients by an unknown mechanism, contributing to an acute coagulopathy which exacerbates bleeding and increases mortality. The objective of this study was to elucidate the mechanism of platelet dysfunction in critically injured patients. We found that circulating platelets are transformed into procoagulant balloons within minutes of injury, accompanied by the release of large numbers of activated microparticles which coat leukocytes. Ballooning platelets were decorated with histone H4, a damage-associated molecular pattern released in massive quantities after severe injury, and exposure of healthy platelets to histone H4 recapitulated the changes in platelet structure and function observed in trauma patients. This is a report of platelet ballooning in human disease and of a previously unrecognized mechanism by which platelets contribute to the innate response to tissue damage.


Asunto(s)
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Hemorragia/sangre , Histonas/metabolismo , Heridas y Lesiones/sangre , Coagulación Sanguínea , Plaquetas/ultraestructura , Calcio/metabolismo , Micropartículas Derivadas de Células/ultraestructura , Hemorragia/etiología , Humanos , Leucocitos/metabolismo , Pruebas de Función Plaquetaria , Trombina/biosíntesis , Heridas y Lesiones/complicaciones
20.
J Clin Invest ; 129(5): 1845-1862, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30907747

RESUMEN

Because metastasis is associated with the majority of cancer-related deaths, its prevention is a clinical aspiration. Prostanoids are a large family of bioactive lipids derived from the activity of cyclooxygenase-1 (COX-1) and COX-2. Aspirin impairs the biosynthesis of all prostanoids through the irreversible inhibition of both COX isoforms. Long-term administration of aspirin leads to reduced distant metastases in murine models and clinical trials, but the COX isoform, downstream prostanoid, and cell compartment responsible for this effect are yet to be determined. Here, we have shown that aspirin dramatically reduced lung metastasis through inhibition of COX-1 while the cancer cells remained intravascular and that inhibition of platelet COX-1 alone was sufficient to impair metastasis. Thromboxane A2 (TXA2) was the prostanoid product of COX-1 responsible for this antimetastatic effect. Inhibition of the COX-1/TXA2 pathway in platelets decreased aggregation of platelets on tumor cells, endothelial activation, tumor cell adhesion to the endothelium, and recruitment of metastasis-promoting monocytes/macrophages, and diminished the formation of a premetastatic niche. Thus, platelet-derived TXA2 orchestrates the generation of a favorable intravascular metastatic niche that promotes tumor cell seeding and identifies COX-1/TXA2 signaling as a target for the prevention of metastasis.


Asunto(s)
Aspirina/farmacología , Plaquetas/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología , Metástasis de la Neoplasia/tratamiento farmacológico , Tromboxano A2/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/farmacología , Plaquetas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares , Macrófagos/metabolismo , Melanoma Experimental , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Monocitos/metabolismo , Trasplante de Neoplasias , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Prostaglandinas/metabolismo , Isoformas de Proteínas , Trombosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...