Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38648543

RESUMEN

Background: West Nile virus (WNV), Everglades virus (EVEV), and five species of Orthobunyavirus were isolated from mosquitoes collected in the Everglades in 2016-2017. Prior studies of blood meals of mosquitoes in southern Florida have related findings to acquisition and transmission of EVEV, St. Louis encephalitis virus, and WNV, but not the Orthobunyavirus viruses associated with the subgenus Melanoconion of the genus Culex. Materials and Methods: In the present study, blood-fed mosquitoes were collected in the Everglades in 2016, 2017, 2021, and 2022, and from an industrial site in Naples, FL in 2017. Blood meals were identified to host species by PCR assays using mitochondrial cytochrome b gene. Results: Blood meals were identified from Anopheles crucians complex and 11 mosquito species captured in the Florida Everglades and from 3 species collected from an industrial site. The largest numbers of blood-fed specimens were from Culex nigripalpus, Culex erraticus, Culex cedecei, and Aedes taeniorhynchus. Cx. erraticus fed on mammals, birds, and reptiles, particularly American alligator. This mosquito species could transmit WNV to American alligator in the wild. Cx. nigripalpus acquired blood meals primarily from birds and mammals and frequently fed on medium-sized mammals and white-tailed deer. Water and wading birds were the primary avian hosts for Cx. nigripalpus and Cx. erraticus in the Everglades. Wading birds are susceptible to WNV and could serve as reservoir hosts. Cx. cedecei fed on five species of rodents, particularly black and hispid cotton rats. EVEV and three different species of Orthobunyavirus have been isolated from the hispid cotton rat and Cx. cedecei in the Everglades. Cx. cedecei is likely acquiring and transmitting these viruses among hispid cotton rats and other rodents. The marsh rabbit was a frequent host for An. crucians complex. An. crucians complex, and other species could acquire Tensaw virus from rabbits. Conclusions: Our study contributes to a better understanding of the host and viral associations of mosquito species in southwestern Florida.

2.
PLoS Pathog ; 20(4): e1011975, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557892

RESUMEN

Arboviruses can emerge rapidly and cause explosive epidemics of severe disease. Some of the most epidemiologically important arboviruses, including dengue virus (DENV), Zika virus (ZIKV), Chikungunya (CHIKV) and yellow fever virus (YFV), are transmitted by Aedes mosquitoes, most notably Aedes aegypti and Aedes albopictus. After a mosquito blood feeds on an infected host, virus enters the midgut and infects the midgut epithelium. The virus must then overcome a series of barriers before reaching the mosquito saliva and being transmitted to a new host. The virus must escape from the midgut (known as the midgut escape barrier; MEB), which is thought to be mediated by transient changes in the permeability of the midgut-surrounding basal lamina layer (BL) following blood feeding. Here, we present a mathematical model of the within-mosquito population dynamics of DENV (as a model system for mosquito-borne viruses more generally) that includes the interaction of the midgut and BL which can account for the MEB. Our results indicate a dose-dependency of midgut establishment of infection as well as rate of escape from the midgut: collectively, these suggest that the extrinsic incubation period (EIP)-the time taken for DENV virus to be transmissible after infection-is shortened when mosquitoes imbibe more virus. Additionally, our experimental data indicate that multiple blood feeding events, which more closely mimic mosquito-feeding behavior in the wild, can hasten the course of infections, and our model predicts that this effect is sensitive to the amount of virus imbibed. Our model indicates that mutations to the virus which impact its replication rate in the midgut could lead to even shorter EIPs when double-feeding occurs. Mechanistic models of within-vector viral infection dynamics provide a quantitative understanding of infection dynamics and could be used to evaluate novel interventions that target the mosquito stages of the infection.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Tracto Gastrointestinal , Mosquitos Vectores
3.
Am J Trop Med Hyg ; 110(5): 968-970, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531101

RESUMEN

Brazoran virus was first isolated from Culex mosquitoes in Texas in 2012, yet little is known about this virus. We report the isolation of this virus from Culex erraticus from southern Florida during 2016. The Florida strain had a nucleotide identity of 96.3% (S segment), 99.1% (M segment), and 95.8% (L segment) to the Texas isolate. Culex quinquefasciatus and Aedes aegypti colonies were subsequently fed virus blood meals to determine their vector competence for Brazoran virus. Culex quinquefasciatus was susceptible to midgut infection, but few mosquitoes developed disseminated infections. Aedes aegypti supported disseminated infection, but virus transmission could not be demonstrated. Suckling mice became infected by intradermal inoculation without visible disease signs. The virus was detected in multiple mouse tissues but rarely infected the brain. This study documents the first isolation of Brazoran virus outside of Texas. Although this virus infected Ae. aegypti and Cx. quinquefasciatus in laboratory trials, their vector competence could not be demonstrated, suggesting they are unlikely vectors of Brazoran virus.


Asunto(s)
Aedes , Culex , Mosquitos Vectores , Orthobunyavirus , Animales , Culex/virología , Aedes/virología , Ratones , Mosquitos Vectores/virología , Florida/epidemiología , Orthobunyavirus/aislamiento & purificación , Femenino
4.
PLoS Negl Trop Dis ; 17(11): e0011703, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37910475

RESUMEN

Aedes aegypti is a highly efficient vector for numerous pathogenic arboviruses including dengue virus (DENV), Zika virus, and yellow fever virus. This efficiency can in part be attributed to their frequent feeding behavior. We previously found that acquisition of a second, full, non-infectious blood meal could accelerate virus dissemination within the mosquito by temporarily compromising midgut basal lamina integrity; however, in the wild, mosquitoes are often interrupted during feeding and only acquire partial or minimal blood meals. To explore the impact of this feeding behavior further, we examined the effects of partial blood feeding on DENV dissemination rates and midgut basal lamina damage in Ae. aegypti. DENV-infected mosquitoes given a secondary partial blood meal had intermediate rates of dissemination and midgut basal lamina damage compared to single-fed and fully double-fed counterparts. Subsequently, we evaluated if basal lamina damage accumulated across feeding episodes. Interestingly, within 24 hours of feeding, damage was proportional to the number of blood meals imbibed; however, this additive effect returned to baseline levels by 96 hours. These data reveal that midgut basal lamina damage and rates of dissemination are proportional to feeding frequency and size, and further demonstrate the impact that mosquito feeding behavior has on vector competence and arbovirus epidemiology. This work has strong implications for our understanding of virus transmission in the field and will be useful when designing laboratory experiments and creating more accurate models of virus spread and maintenance.


Asunto(s)
Aedes , Arbovirus , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores , Sistema Digestivo
5.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808804

RESUMEN

Flaviviruses are arthropod-borne (arbo)viruses which can emerge rapidly and cause explosive epidemics of severe disease. Some of the most epidemiologically important flaviviruses, including dengue virus (DENV), Zika virus (ZIKV) and yellow fever virus (YFV), are transmitted by Aedes mosquitoes, most notably Aedes aegypti and Aedes albopictus. After a mosquito blood feeds on an infected host, virus enters the midgut and infects the midgut epithelium. The virus must then overcome a series of barriers before reaching the mosquito saliva and being transmitted to a new host. The virus must escape from the midgut (known as the midgut escape barrier; MEB), which is thought to be mediated by transient changes in the permeability of the midgut-surrounding basal lamina layer (BL) following blood feeding. Here, we present a mathematical model of the within-mosquito population dynamics of flaviviruses that includes the interaction of the midgut and BL which can account for the MEB. Our results indicate a dose-dependency of midgut establishment of infection as well as rate of escape from the midgut: collectively, these suggest that the extrinsic incubation period (EIP) - the time taken for DENV virus to be transmissible after infection - is shortened when mosquitoes imbibe more virus. Additionally, our experimental data indicates that multiple blood feeding events, which more closely mimic mosquito-feeding behavior in the wild, can hasten the course of infections, and our model predicts that this effect is sensitive to the amount of virus imbibed. Our model indicates that mutations to the virus which impact its replication rate in the midgut could lead to even shorter EIPs when double-feeding occurs. Mechanistic models of within-vector viral infection dynamics provide a quantitative understanding of infection dynamics and could be used to evaluate novel interventions that target the mosquito stages of the infection. Author summary: Aedes mosquitoes are the main vectors of dengue virus (DENV), Zika virus (ZIKV) and yellow fever virus (YFV), all of which can cause severe disease in humans with dengue alone infecting an estimated 100-400 million people each year. Understanding the processes that affect whether, and at which rate, mosquitoes may transmit such viruses is, hence, paramount. Here, we present a mathematical model of virus dynamics within infected mosquitoes. By combining the model with novel experimental data, we show that the course of infection is sensitive to the initial dose of virus ingested by the mosquito. The data also indicates that mosquitoes which blood feed subsequent to becoming infected may be able to transmit infection earlier, which is reproduced in the model. This is important as many mosquito species feed multiple times during their lifespan and, any reduction in time to dissemination will increase the number of days that a mosquito is infectious and so enhance the risk of transmission. Our study highlights the key and complementary roles played by mathematical models and experimental data for understanding within-mosquito virus dynamics.

6.
J Med Entomol ; 60(6): 1242-1251, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37862091

RESUMEN

This review examines the epidemiology, ecology, and evolution of Jamestown Canyon virus (JCV) and highlights new findings from the literature to better understand the virus, the vectors driving its transmission, and its emergence as an agent of arboviral disease. We also reanalyze data from the Connecticut Arbovirus Surveillance Program which represents the largest dataset on JCV infection in mosquitoes. JCV is a member of the California serogroup of the genus Orthobunyavirus, family Peribunyaviridae, and is found throughout much of temperate North America. This segmented, negative-sense RNA virus evolves predominately by genetic drift punctuated by infrequent episodes of genetic reassortment among novel strains. It frequently infects humans within affected communities and occasionally causes febrile illness and neuroinvasive disease in people. Reported human cases are relatively rare but are on the rise during the last 20 yr, particularly within the northcentral and northeastern United States. JCV appears to overwinter and reemerge each season by transovarial or vertical transmission involving univoltine Aedes (Diptera: Culicidae) species, specifically members of the Aedes communis (de Geer) and Ae. stimulans (Walker) Groups. The virus is further amplified in a mosquito-deer transmission cycle involving a diversity of mammalophilic mosquito species. Despite progress in our understanding of this virus, many aspects of the vector biology, virology, and human disease remain poorly understood. Remaining questions and future directions of research are discussed.


Asunto(s)
Aedes , Arbovirus , Ciervos , Virus de la Encefalitis de California , Humanos , Animales , Virus de la Encefalitis de California/genética , Mosquitos Vectores
7.
Curr Biol ; 33(12): 2515-2527.e6, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37295427

RESUMEN

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.


Asunto(s)
Culicidae , Virus de la Encefalitis Equina del Este , Encefalomielitis Equina , Pájaros Cantores , Animales , Caballos , Humanos , Virus de la Encefalitis Equina del Este/genética , Mosquitos Vectores , Encefalomielitis Equina/epidemiología , Encefalomielitis Equina/veterinaria , Massachusetts/epidemiología , Brotes de Enfermedades/veterinaria
8.
J Am Mosq Control Assoc ; 39(2): 68-74, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364183

RESUMEN

Thirty-seven species and subspecies of mosquitoes were identified from 3,580,610 specimens collected in eastern (Cass, Nelson, and Richland counties) and western (Williams County) North Dakota in 2003-2006. Four species were new state records (Aedes schizopinax, Psorophora ciliata, Ps. ferox, and Ps. horrida). Aedes vexans was dominant (82.9%). Other relatively abundant species were Ae. trivittatus (7.7%), Ae. melanimon (2.7%), Culex tarsalis (2.6%), Ae. dorsalis (1.6%), Ae. sticticus (1.0), and Culiseta inornata (0.9%). The seasonality of the species is presented.


Asunto(s)
Aedes , Culex , Culicidae , Ochlerotatus , Animales , North Dakota
9.
Proc Natl Acad Sci U S A ; 120(16): e2218012120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040418

RESUMEN

Powassan virus is an emerging tick-borne virus of concern for public health, but very little is known about its transmission patterns and ecology. Here, we expanded the genomic dataset by sequencing 279 Powassan viruses isolated from Ixodes scapularis ticks from the northeastern United States. Our phylogeographic reconstructions revealed that Powassan virus lineage II was likely introduced or emerged from a relict population in the Northeast between 1940 and 1975. Sequences strongly clustered by sampling location, suggesting a highly focal geographical distribution. Our analyses further indicated that Powassan virus lineage II emerged in the northeastern United States mostly following a south-to-north pattern, with a weighted lineage dispersal velocity of ~3 km/y. Since the emergence in the Northeast, we found an overall increase in the effective population size of Powassan virus lineage II, but with growth stagnating during recent years. The cascading effect of population expansion of white-tailed deer and I. scapularis populations likely facilitated the emergence of Powassan virus in the northeastern United States.


Asunto(s)
Ciervos , Virus de la Encefalitis Transmitidos por Garrapatas , Ixodes , Animales , New England
10.
J Med Entomol ; 60(3): 564-574, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36964697

RESUMEN

Quantifying synchrony in species population fluctuations and determining its driving factors can inform multiple aspects of ecological and epidemiological research and policy decisions. We examined seasonal mosquito and arbovirus surveillance data collected in Connecticut, United States from 2001 to 2020 to quantify spatial relationships in 19 mosquito species and 7 arboviruses timeseries accounting for environmental factors such as climate and land cover characteristics. We determined that mosquito collections, on average, were significantly correlated up to 10 km though highly variable among the examined species. Few arboviruses displayed any synchrony and significant maximum correlated distances never exceeded 5 km. After accounting for distance, mixed effects models showed that mosquito or arbovirus identity explained more variance in synchrony estimates than climate or land cover factors. Correlated mosquito collections up to 10-20 km suggest that mosquito control operations for nuisance and disease vectors alike must expand treatment zones to regional scales for operations to have population-level impacts. Species identity matters as well, and some mosquito species will require much larger treatment zones than others. The much shorter correlated detection distances for arboviruses reinforce the notion that focal-level processes drive vector-borne pathogen transmission dynamics and risk of spillover into human populations.


Asunto(s)
Infecciones por Arbovirus , Arbovirus , Culicidae , Animales , Humanos , Clima , Control de Mosquitos , Connecticut , Mosquitos Vectores
11.
medRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945576

RESUMEN

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.

12.
Commun Biol ; 5(1): 1300, 2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36435882

RESUMEN

Reproductive diapause serves as biological mechanism for many insects, including the mosquito Culex pipiens, to overwinter in temperate climates. While Cx. pipiens diapause has been well-studied in the laboratory, the timing and environmental signals that promote diapause under natural conditions are less understood. In this study, we examine laboratory, semi-field, and mosquito surveillance data to define the approximate timeline and seasonal conditions that contribute to Cx. pipiens diapause across the United States. While confirming integral roles of temperature and photoperiod in diapause induction, we also demonstrate the influence of latitude, elevation, and mosquito population genetics in shaping Cx. pipiens diapause incidence across the country. Coinciding with the cessation of WNV activity, these data can have important implications for mosquito control, where targeted efforts prior to diapause induction can decrease mosquito populations and WNV overwintering to reduce mosquito-borne disease incidence the following season.


Asunto(s)
Culex , Diapausa , Animales , Estados Unidos/epidemiología , Culex/genética , Diapausa/genética , Estaciones del Año , Reproducción , Temperatura
13.
Sci Rep ; 12(1): 18013, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289303

RESUMEN

Effectiveness of mosquito larvicide active ingredients (AI), such as Lysinibacillus sphaericus, varies between species, yet little is known regarding how differential effectiveness manifests in larval communities in applied settings. To examine how differential effectiveness of L. sphaericus influences larval community dynamics, we performed two experiments. We performed a field experiment in which containers were seeded with a standardized nutrient treatment, mosquitoes colonized the containers, and then containers received one of three L. sphaericus applications. We then performed competition assays between Culex pipiens and Aedes albopictus in low nutrient environments using multiple interspecific ratios and the presence/absence of a low dose of L. sphaericus. Field results demonstrated elimination of Culex spp. from treated containers while container breeding Aedes spp. proliferated across all treatments. Lysinibacillus sphaericus did not influence competition between Cx. pipiens and Ae. albopictus, and the L. sphaericus application eliminated Cx. pipiens in all treatment replicates while survival of Ae. albopictus was similar between treated and untreated containers across interspecific ratios. Lysinibacillus sphaericus is an effective AI for control of Culex spp. However, different AIs should be utilized in habitats containing non-Culex genera while a mix of AIs should be utilized where coexistence of multiple genera is expected or confirmed.


Asunto(s)
Aedes , Bacillus , Culex , Animales , Larva
14.
Am J Trop Med Hyg ; 107(6): 1239-1241, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36315998

RESUMEN

Mechanical transmission is an understudied mode of arbovirus transmission that occurs when a biting insect transmits virus among hosts by the direct transfer of virus particles contaminating its mouthparts. Multiple arboviruses have been shown to be capable of utilizing this transmission route, but most studies were conducted 40 to 70 years ago using dated methodologies. To gain a better understanding of this phenomenon, we used molecular techniques to evaluate the efficiency of mechanical transmission by Aedes aegypti mosquitoes for two evolutionarily divergent arboviruses, chikungunya virus (CHIKV) and dengue virus (DENV). Viral RNA and/or infectious DENV could be detected on 13.8% of mosquito proboscises sampled immediately after an infectious bloodmeal, but positivity rates declined within hours. CHIKV RNA and/or infectious virus was detected on 38.8% of proboscises immediately after feeding but positivity rates dropped to 2.5% within 4 hours. RNA copy numbers were low for both viruses, and we were unable to demonstrate mechanical transmission of CHIKV using an established animal model, suggesting that this mode of transmission is unlikely under natural conditions.


Asunto(s)
Aedes , Arbovirus , Fiebre Chikungunya , Virus Chikungunya , Virus del Dengue , Dengue , Animales , ARN Viral/genética , Mosquitos Vectores
15.
Am J Trop Med Hyg ; 106(2): 610-622, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35008051

RESUMEN

Mosquitoes were collected for 12 consecutive months beginning June 2016, from 11 locations in the Florida Everglades, Collier County, and tested for viruses by isolation in Vero cells and subsequent identification. One species complex and 31 species of mosquitoes were identified from 668,809 specimens. Ochlerotatus taeniorhynchus comprised 72.2% of the collection. Other notable species were Anopheles crucians complex, Culex nigripalpus, Cx. erraticus, and Cx. cedecei. Seven species of virus were identified from 110 isolations: Everglades, Gumbo Limbo, Mahogany Hammock, Pahayokee, Shark River, Tensaw, and West Nile viruses. Everglades, West Nile, Tensaw, and Mahogany Hammock viruses were most frequently isolated. Largest numbers of viruses were identified from Cx. cedecei, Cx. nigripalpus, and An. crucians complex. Five species of virus were isolated from Cx. cedecei. Viruses were isolated from mangrove, cypress swamp, hardwood hammock, and sawgrass habitats. West Nile virus was isolated August through October when Cx. nigripalpus was most abundant. Everglades virus was the most frequently isolated virus from nine species of mosquitoes collected from June through August. Tensaw virus was isolated primarily from Anopheles species. Isolations were made in July, August, January, February, and April, suggesting that this virus may be present in host-seeking mosquitoes throughout the year. Mahogany Hammock, Shark River, Gumbo Limbo, and Pahayokee viruses were isolated primarily from Cx. cedecei from June through December. Shotgun metagenomic sequencing was used to document that seven pools of Cx. cedecei were infected with two arboviruses. As communities expand into the Everglades, more humans will become exposed to arboviruses.


Asunto(s)
Culicidae/clasificación , Culicidae/virología , Mosquitos Vectores/clasificación , Mosquitos Vectores/virología , ARN Viral/aislamiento & purificación , Enfermedades Transmitidas por Vectores/virología , Virosis/clasificación , Animales , Ecosistema , Florida , Filogenia , Estaciones del Año
16.
NeoBiota ; 78: 99-127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37408738

RESUMEN

The Asian tiger mosquito (Aedes albopictus) arrived in the USA in the 1980's and rapidly spread throughout eastern USA within a decade. The predicted northern edge of its overwintering distribution on the East Coast of the USA roughly falls across New York, Connecticut, and Massachusetts, where the species has been recorded as early as 2000. It is unclear whether Ae. albopictus populations have become established and survive the cold winters in these areas or are recolonized every year. We genotyped and analyzed populations of Ae. albopictus from the northeast USA using 15 microsatellite markers and compared them with other populations across the country and to representatives of the major global genetic clades to investigate their connectivity and stability. Founder effects or bottlenecks were rare at the northern range of the Ae. albopictus distribution in the northeastern USA, with populations displaying high levels of genetic diversity and connectivity along the East Coast. There is no evidence of population turnover in Connecticut during the course of three consecutive years, with consistent genetic structure throughout this period. Overall, these results support the presence of established populations of Ae. albopictus in New York, Connecticut, and Massachusetts, successfully overwintering and migrating in large numbers. Given the stability and interconnectedness of these populations, Ae. albopictus has the potential to continue to proliferate and expand its range northward under mean warming conditions of climate change. Efforts to control Ae. albopictus in these areas should thus focus on vector suppression rather than eradication strategies, as local populations have become firmly established and are expected to reemerge every summer.

17.
J Med Entomol ; 59(1): 1-13, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34734628

RESUMEN

In the current review, we examine the regional history, ecology, and epidemiology of eastern equine encephalitis virus (EEEV) to investigate the major drivers of disease outbreaks in the northeastern United States. EEEV was first recognized as a public health threat during an outbreak in eastern Massachusetts in 1938, but historical evidence for equine epizootics date back to the 1800s. Since then, sporadic disease outbreaks have reoccurred in the Northeast with increasing frequency and northward expansion of human cases during the last 20 yr. Culiseta melanura (Coquillett) (Diptera: Culicidae) serves as the main enzootic vector that drives EEEV transmission among wild birds, but this mosquito species will occasionally feed on mammals. Several species have been implicated as bridge vectors to horses and humans, with Coquilletstidia perturbans (Walker) as a leading suspect based on its opportunistic feeding behavior, vector competence, and high infection rates during recent disease outbreaks. A diversity of bird species are reservoir competent, exposed to EEEV, and serve as hosts for Cs. melanura, with a few species, including the wood thrush (Hlocichia mustelina) and the American robin (Turdus migratorius), contributing disproportionately to virus transmission based on available evidence. The major factors responsible for the sustained resurgence of EEEV are considered and may be linked to regional landscape and climate changes that support higher mosquito densities and more intense virus transmission.


Asunto(s)
Aves/virología , Reservorios de Enfermedades/virología , Virus de la Encefalitis Equina del Este/fisiología , Encefalomielitis Equina , Enfermedades de los Caballos , Mosquitos Vectores , Animales , Encefalomielitis Equina/epidemiología , Encefalomielitis Equina/transmisión , Encefalomielitis Equina/veterinaria , Encefalomielitis Equina/virología , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/transmisión , Enfermedades de los Caballos/virología , Caballos , Humanos , Mid-Atlantic Region/epidemiología , New England/epidemiología
18.
Vector Borne Zoonotic Dis ; 21(12): 961-972, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34665047

RESUMEN

Understanding vector-host interactions is crucial for evaluating the role of mosquito species in enzootic cycling and epidemic/epizootic transmission of arboviruses, as well as assessing vertebrate host contributions to maintenance and amplification in different virus foci. To investigate blood-feeding pattern of Culex pipiens, engorged mosquitoes were collected on a weekly basis at 50 sites throughout Suffolk, Virginia, using Centers for Disease Control and Prevention miniature light traps, BG-Sentinel traps, and modified Reiter gravid traps. Vertebrate hosts of mosquitoes were identified by amplifying and sequencing portions of the mitochondrial cytochrome b gene. Of 281 Cx. pipiens bloodmeals successfully identified to species, 255 (90.7%) contained solely avian blood, 13 (4.6%) mammalian, 1 (0.4%) reptilian, and 12 (4.3%) both avian and mammalian blood. Nineteen avian species were identified as hosts for Cx. pipiens with American robin (n = 141, 55.3% of avian hosts) and northern cardinal (n = 57, 22.4%) as the most common hosts. More American robin feedings took place in areas of higher development. Three mammalian species were also identified as hosts for Cx. pipiens with Virginia opossum and domestic cat as the most common hosts in this class (each n = 6, 46.2% of mammalian hosts). There was no significant seasonal difference in the proportion of bloodmeals obtained from avian hosts, but there was a decrease in the proportion of bloodmeals from mammalian hosts from spring to fall. One engorged specimen of Cx. pipiens with Virginia opossum-derived bloodmeal tested positive for West Nile virus (WNV), and another with black-and-white warbler-derived bloodmeal tested positive for eastern equine encephalitis virus. Our findings, in conjunction with the results of vector competence studies and virus isolation from field-collected mosquitoes, lend additional support that Cx. pipiens serves as the principal enzootic vector and potential epizootic/epidemic vector of WNV in southeastern Virginia.


Asunto(s)
Arbovirus , Enfermedades de los Gatos , Culex , Enfermedades de los Caballos , Passeriformes , Enfermedades de las Ovejas , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Gatos , Conducta Alimentaria , Caballos , Mosquitos Vectores , Ovinos , Virginia/epidemiología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria
19.
Parasit Vectors ; 14(1): 466, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503550

RESUMEN

BACKGROUND: Powassan virus (POWV; genus Flavivirus) is the sole North American member of the tick-borne encephalitis sero-complex and an increasing public health threat in the USA. Maintained in nature by Ixodes spp. ticks, POWV has also been isolated from species of other hard tick genera, yet it is unclear if these species can serve as vectors. Dermacentor variabilis and Amblyomma americanum share geographic and ecologic overlap with Ixodes spp. ticks and POWV transmission foci, raising the possibility that POWV could become established in these tick species and leading to range expansion and increased human risk. Therefore, we assessed the competency of Ixodes scapularis, D. variabilis and A. americanum for POWV lineage II (POWV II). METHODS: Larvae from all three species were co-infested on POWV-infected Balb/c mice. The engorged larvae were allowed to molt to nymphs and screened for the presence of POWV II RNA by reverse transcription-qPCR. Eight infected nymphs from each species were allowed to individually feed on a naïve mouse. Mice were screened for the presence of POWV II RNA to determine infection status. RESULTS: The results demonstrated that larvae from all three tick species were able to efficiently acquire POWV II via feeding on viremic mice, maintain infection through molting and successively transmit POWV to naïve mice at the nymphal stage at comparable rates across all three species. CONCLUSIONS: Our findings reveal that non-Ixodes tick species can serve as competent vectors for POWV and highlight the potential role of these species in the ecology and epidemiology of POWV. Future studies examining the possible implications of these findings on POWV epidemiology and the adaptability of POWV in these new vectors are warranted.


Asunto(s)
Amblyomma/virología , Vectores Artrópodos/virología , Dermacentor/virología , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/transmisión , Ixodes/virología , Animales , Encefalitis Transmitida por Garrapatas/virología , Femenino , Humanos , Larva , Masculino , Ratones , Ratones Endogámicos BALB C , Ninfa
20.
Pest Manag Sci ; 77(11): 5186-5201, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34272800

RESUMEN

BACKGROUND: Mosquito larval control through the use of insecticides is the most common strategy for suppressing West Nile virus (WNV) vector populations in Connecticut (CT), USA. To evaluate the ability of larval control to reduce entomological risk metrics associated with WNV, we performed WNV surveillance and assessments of municipal larvicide application programs in Milford and Stratford, CT in 2019 and 2020. Each town treated catch basins and nonbasin habitats (Milford only) with biopesticide products during both WNV transmission seasons. Adult mosquitoes were collected weekly with gravid and CO2 -baited light traps and tested for WNV; larvae and pupae were sampled weekly from basins within 500 m of trapping sites, and Culex pipiens larval mortality was determined with laboratory bioassays of catch basin water samples. RESULTS: Declines in 4th instar larvae and pupae were observed in catch basins up to 2-week post-treatment, and we detected a positive relationship between adult female C. pipiens collections in gravid traps and pupal abundance in basins. We also detected a significant difference in total light trap collections between the two towns. Despite these findings, C. pipiens adult collections and WNV mosquito infection prevalence in gravid traps were similar between towns. CONCLUSION: Larvicide applications reduced pupal abundance and the prevalence of host-seeking adults with no detectable impact on entomological risk metrics for WNV. Further research is needed to better determine the level of mosquito larval control required to reduce WNV transmission risk.


Asunto(s)
Virus del Nilo Occidental , Animales , Connecticut , Femenino , Larva , Mosquitos Vectores , Conducta de Reducción del Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...