Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 219(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35796804

RESUMEN

Triptans are a class of commonly prescribed antimigraine drugs. Here, we report a previously unrecognized role for them to suppress appetite in mice. In particular, frovatriptan treatment reduces food intake and body weight in diet-induced obese mice. Moreover, the anorectic effect depends on the serotonin (5-HT) 1B receptor (Htr1b). By ablating Htr1b in four different brain regions, we demonstrate that Htr1b engages in spatiotemporally segregated neural pathways to regulate postnatal growth and food intake. Moreover, Htr1b in AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) contributes to the hypophagic effects of HTR1B agonists. To further study the anorexigenic Htr1b circuit, we generated Htr1b-Cre mice. We find that ARH Htr1b neurons bidirectionally regulate food intake in vivo. Furthermore, single-nucleus RNA sequencing analyses revealed that Htr1b marks a subset of AgRP neurons. Finally, we used an intersectional approach to specifically target these neurons (Htr1bAgRP neurons). We show that they regulate food intake, in part, through a Htr1bAgRP→PVH circuit.


Asunto(s)
Apetito , Receptor de Serotonina 5-HT1B , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Ratones , Ratones Obesos , Receptor de Serotonina 5-HT1B/genética , Receptor de Serotonina 5-HT1B/metabolismo
2.
Am J Physiol Endocrinol Metab ; 321(1): E146-E155, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34097543

RESUMEN

Cannabinoid 1 receptor (CB1R) inverse agonists reduce body weight and improve several parameters of glucose homeostasis. However, these drugs have also been associated with deleterious side effects. CB1R expression is widespread in the brain and in peripheral tissues, but whether specific sites of expression can mediate the beneficial metabolic effects of CB1R drugs, while avoiding the untoward side effects, remains unclear. Evidence suggests inverse agonists may act on key sites within the central nervous system to improve metabolism. The ventromedial hypothalamus (VMH) is a critical node regulating energy balance and glucose homeostasis. To determine the contributions of CB1Rs expressed in VMH neurons in regulating metabolic homeostasis, we generated mice lacking CB1Rs in the VMH. We found that the deletion of CB1Rs in the VMH did not affect body weight in chow- and high-fat diet-fed male and female mice. We also found that deletion of CB1Rs in the VMH did not alter weight loss responses induced by the CB1R inverse agonist SR141716. However, we did find that CB1Rs of the VMH regulate parameters of glucose homeostasis independent of body weight in diet-induced obese male mice.NEW & NOTEWORTHY Cannabinoid 1 receptors (CB1Rs) regulate metabolic homeostasis, and CB1R inverse agonists reduce body weight and improve parameters of glucose metabolism. However, the cell populations expressing CB1Rs that regulate metabolic homeostasis remain unclear. CB1Rs are highly expressed in the ventromedial hypothalamic nucleus (VMH), which is a crucial node that regulates metabolism. With CRISPR/Cas9, we generated mice lacking CB1Rs specifically in VMH neurons and found that CB1Rs in VMH neurons are essential for the regulation of glucose metabolism independent of body weight regulation.


Asunto(s)
Peso Corporal/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Neuronas/metabolismo , Receptor Cannabinoide CB1/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Composición Corporal/fisiología , Proteína 9 Asociada a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Dieta Alta en Grasa , Metabolismo Energético/fisiología , Femenino , Edición Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética
3.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33978701

RESUMEN

Atypical antipsychotics such as risperidone cause drug-induced metabolic syndrome. However, the underlying mechanisms remain largely unknown. Here, we report a new mouse model that reliably reproduces risperidone-induced weight gain, adiposity, and glucose intolerance. We found that risperidone treatment acutely altered energy balance in C57BL/6 mice and that hyperphagia accounted for most of the weight gain. Transcriptomic analyses in the hypothalamus of risperidone-fed mice revealed that risperidone treatment reduced the expression of Mc4r. Furthermore, Mc4r in Sim1 neurons was necessary for risperidone-induced hyperphagia and weight gain. Moreover, we found that the same pathway underlies the obesogenic effect of olanzapine-another commonly prescribed antipsychotic drug. Remarkably, whole-cell patch-clamp recording demonstrated that risperidone acutely inhibited the activity of hypothalamic Mc4r neurons via the opening of a postsynaptic potassium conductance. Finally, we showed that treatment with setmelanotide, an MC4R-specific agonist, mitigated hyperphagia and obesity in both risperidone- and olanzapine-fed mice.


Asunto(s)
Antipsicóticos/farmacología , Receptor de Melanocortina Tipo 4/metabolismo , Risperidona/farmacología , Aumento de Peso/efectos de los fármacos , Animales , Femenino , Hiperfagia/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/metabolismo , Olanzapina/farmacología , Potasio/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Transcriptoma/efectos de los fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
4.
J Neurosci ; 40(16): 3165-3177, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32213554

RESUMEN

Despite their opposing actions on food intake, POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) are derived from the same progenitors that give rise to ARH neurons. However, the mechanism whereby common neuronal precursors subsequently adopt either the anorexigenic (POMC) or the orexigenic (NPY/AgRP) identity remains elusive. We hypothesize that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic factors. In search of them, we profiled the transcriptomes of developing POMC and NPY/AgRP neurons in mice. Moreover, cell-type-specific transcriptomic analyses revealed transcription regulators that are selectively enriched in either population, but whose developmental functions are unknown in these neurons. Among them, we found the expression of the PR domain-containing factor 12 (Prdm12) was enriched in POMC neurons but absent in NPY/AgRP neurons. To study the role of Prdm12 in vivo, we developed and characterized a floxed Prdm12 allele. Selective ablation of Prdm12 in embryonic POMC neurons led to significantly reduced Pomc expression as well as early-onset obesity in mice of either sex that recapitulates symptoms of human POMC deficiency. Interestingly, however, specific deletion of Prdm12 in adult POMC neurons showed that it is no longer required for Pomc expression or energy balance. Collectively, these findings establish a critical role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Finally, the combination of cell-type-specific genomic and genetic analyses provides a means to dissect cellular and functional diversity in the hypothalamus whose neurodevelopment remains poorly studied.SIGNIFICANCE STATEMENT POMC and NPY/AgRP neurons are derived from the same hypothalamic progenitors but have opposing effects on food intake. We profiled the transcriptomes of genetically labeled POMC and NPY/AgRP neurons in the developing mouse hypothalamus to decipher the transcriptional codes behind the versus orexigenic neuron identity. Our analyses revealed 29 transcription regulators that are selectively enriched in one of the two populations. We generated new mouse genetic models to selective ablate one of POMC-neuron enriched transcription factors Prdm12 in developing and adult POMC neurons. Our studies establish a previously unrecognized role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis.


Asunto(s)
Hipotálamo/metabolismo , Melanocortinas/metabolismo , Neuronas/metabolismo , Transcriptoma , Proteína Relacionada con Agouti/metabolismo , Animales , Peso Corporal , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Melanocortinas/genética , Ratones , Ratones Transgénicos , Proopiomelanocortina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...