Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 93(31): 10850-10861, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34320311

RESUMEN

We describe a mass spectrometry (MS) analytical platform resulting from the novel integration of acoustic droplet ejection (ADE) technology, an open-port interface (OPI), and electrospray ionization (ESI)-MS that creates a transformative system enabling high-speed sampling and label-free analysis. The ADE technology delivers nanoliter droplets in a touchless manner with high speed, precision, and accuracy. Subsequent sample dilution within the OPI, in concert with the capabilities of modern ESI-MS, eliminates the laborious sample preparation and method development required in current approaches. This platform is applied to a variety of experiments, including high-throughput (HT) pharmacology screening, label-free in situ enzyme kinetics, in vitro absorption, distribution, metabolism, elimination, pharmacokinetic and biomarker analysis, and HT parallel medicinal chemistry.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , Acústica
2.
Anal Chim Acta ; 991: 89-94, 2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29031302

RESUMEN

Mass spectrometry (MS) based quantitative approaches typically require a thorough sample clean-up and a decent chromatographic step in order to achieve needed figures of merit. However, in most cases, such processes are not optimal for urgent assessments and high-throughput determinations. The direct coupling of solid phase microextraction (SPME) to MS has shown great potential to shorten the total sample analysis time of complex matrices, as well as to diminish potential matrix effects and instrument contamination. In this study, we demonstrate the use of the open-port probe (OPP) as a direct and robust sampling interface to couple biocompatible-SPME (Bio-SPME) fibres to MS for the rapid quantitation of opioid isomers (i.e. codeine and hydrocodone) in human plasma. In place of chromatography, a differential mobility spectrometry (DMS) device was implemented to provide the essential selectivity required to quantify these constitutional isomers. Taking advantage of the simplified sample preparation process based on Bio-SPME and the fast separation with DMS-MS coupling via OPP, a high-throughput assay (10-15 s per sample) with limits of detection in the sub-ng/mL range was developed. Succinctly, we demonstrated that by tuning adequate ion mobility separation conditions, SPME-OPP-MS can be employed to quantify non-resolved compounds or those otherwise hindered by co-extracted isobaric interferences without further need of coupling to other separation platforms.


Asunto(s)
Analgésicos Opioides/sangre , Codeína/sangre , Hidrocodona/sangre , Espectrometría de Masas , Microextracción en Fase Sólida , Humanos
3.
Anal Chem ; 89(7): 3805-3809, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28192911

RESUMEN

In recent years, the direct coupling of solid phase microextraction (SPME) and mass spectrometry (MS) has shown its great potential to improve limits of quantitation, accelerate analysis throughput, and diminish potential matrix effects when compared to direct injection to MS. In this study, we introduce the open port probe (OPP) as a robust interface to couple biocompatible SPME (Bio-SPME) fibers to MS systems for direct electrospray ionization. The presented design consisted of minimal alterations to the front-end of the instrument and provided better sensitivity, simplicity, speed, wider compound coverage, and high-throughput in comparison to the LC-MS based approach. Quantitative determination of clenbuterol, fentanyl, and buprenorphine was successfully achieved in human urine. Despite the use of short extraction/desorption times (5 min/5 s), limits of quantitation below the minimum required performance levels (MRPL) set by the world antidoping agency (WADA) were obtained with good accuracy (≥90%) and linearity (R2 > 0.99) over the range evaluated for all analytes using sample volumes of 300 µL. In-line technologies such as multiple reaction monitoring with multistage fragmentation (MRM3) and differential mobility spectrometry (DMS) were used to enhance the selectivity of the method without compromising analysis speed. On the basis of calculations, once coupled to high throughput, this method can potentially yield preparation times as low as 15 s per sample based on the 96-well plate format. Our results demonstrated that Bio-SPME-OPP-MS efficiently integrates sampling/sample cleanup and atmospheric pressure ionization, making it an advantageous configuration for several bioanalytical applications, including doping in sports, in vivo tissue sampling, and therapeutic drug monitoring.

5.
Anal Chem ; 80(6): 1854-8, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18278951

RESUMEN

The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused-silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel walls and each other by the oil-phase carrier. An off-chip valving system stopped the droplets on-chip, allowing thermal cycling for reverse transcription and subsequent PCR amplification without droplet motion. This combination of the established real-time reverse transcription-PCR assay with digital microfluidics is ideal for isolating single-copy RNA and virions from a complex environment and will be useful in viral discovery and gene-profiling applications.


Asunto(s)
Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Secuencia de Bases , Cartilla de ADN , Microfluídica , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...