Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(6): 065102, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778016

RESUMEN

A dual-axis torsional thrust stand was successfully demonstrated at the Air Force Research Laboratory, enabling direct simultaneous thrust and mass loss measurement for the Air Force Electrospray Thruster Series 2 passively fed electrospray thruster. The dual-axis system is effectively two nulled torsional thrust stands sharing a single dual-axis gimbal with a thrust and mass resolution of ±0.2 µN and ±0.04 mg, respectively. The development of this system was inspired by a need for direct efficiency characterization of electrosprays via in situ mass measurements, and performance was compared to thruster masses measured pre- and post-testing using an analytical balance. Mass consumption data captured via the dual-axis stand, which is calibrated to a traceable uncertainty of 1.6%, varied between -5% and 18% as compared to analytical balance measurements throughout a multi-month testing effort highlighting the limitations in pre/post-weighing as a method for capturing propellant consumption due to absorption of atmospheric moisture when thrusters are removed from vacuum. Thrust stand tests were limited to short term operation with a daily available testing window of ∼5 h due to thrust stand drift following the 24 h cyclic temperature variations of the testing facility. A thorough investigation into the root cause of ambient thermal drift suggests that the thermal response of commercial flex-pivot bearings is directly producing spurious torques on the order of 10 µN m/°C. Additionally, unresolved charging effects on thrust stand hardware currently limit thrust stand operation to tests operating with a positive thruster polarity. Further development and long duration test stability require both a targeted investigation into flex-pivot thermal response and minimization of facility effects.

2.
Rev Sci Instrum ; 92(1): 013502, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514234

RESUMEN

As diagnostic groups are increasingly called upon to participate in experimental campaigns at remote facilities, there is a need to develop portable versions of plasma diagnostic systems. One such diagnostic is laser induced fluorescence (LIF). Here, we describe a portable LIF apparatus that eliminates the need for an optical table, beam splitters, and an optical chopper. All of the light exiting the laser system is coupled through optical fibers to the experiment and housekeeping diagnostics. The collected light is coupled through an optical fiber as well. A key feature is modulation of the tapered amplifier current instead of physical modulation of the laser output. Using this portable LIF system, measurements of ion temperature, ion flow, and relative metastable ion density are reported for two different remote experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA