Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38092066

RESUMEN

Callosobruchus maculatus is a major agricultural pest of legume crops worldwide and an established model system in ecology and evolution. Yet, current molecular biological resources for this species are limited. Here, we employ Hi-C sequencing to generate a greatly improved genome assembly and we annotate its repetitive elements in a dedicated in-depth effort where we manually curate and classify the most abundant unclassified repeat subfamilies. We present a scaffolded chromosome-level assembly, which is 1.01 Gb in total length with 86% being contained within the 9 autosomes and the X chromosome. Repetitive sequences accounted for 70% of the total assembly. DNA transposons covered 18% of the genome, with the most abundant superfamily being Tc1-Mariner (9.75% of the genome). This new chromosome-level genome assembly of C. maculatus will enable future genetic and evolutionary studies not only of this important species but of beetles more generally.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Genoma , Secuencias Repetitivas de Ácidos Nucleicos , Cromosoma X , Elementos Transponibles de ADN/genética , Filogenia
2.
Mol Ecol ; 32(17): 4713-4724, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37386734

RESUMEN

Evolutionary genetics has long struggled with understanding how functional genes under selection remain polymorphic in natural populations. Taking as a starting point that natural selection is ultimately a manifestation of ecological processes, we spotlight an underemphasized and potentially ubiquitous ecological effect that may have fundamental effects on the maintenance of genetic variation. Negative frequency dependency is a well-established emergent property of density dependence in ecology, because the relative profitability of different modes of exploiting or utilizing limiting resources tends to be inversely proportional to their frequency in a population. We suggest that this may often generate negative frequency-dependent selection (NFDS) on major effect loci that affect rate-dependent physiological processes, such as metabolic rate, that are phenotypically manifested as polymorphism in pace-of-life syndromes. When such a locus under NFDS shows stable intermediate frequency polymorphism, this should generate epistatic selection potentially involving large numbers of loci with more minor effects on life-history (LH) traits. When alternative alleles at such loci show sign epistasis with a major effect locus, this associative NFDS will promote the maintenance of polygenic variation in LH genes. We provide examples of the kind of major effect loci that could be involved and suggest empirical avenues that may better inform us on the importance and reach of this process.


Asunto(s)
Rasgos de la Historia de Vida , Polimorfismo Genético , Selección Genética , Evolución Biológica , Alelos , Modelos Genéticos , Variación Genética , Epistasis Genética
3.
Biol Lett ; 19(1): 20220450, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693428

RESUMEN

Our general understanding of the evolution of genome size (GS) is incomplete, and it has long been clear that GS does not reflect organismal complexity. Here, we assess the hypothesis that larger genomes may allow organisms to better cope with environmental variation. It is, for example, possible that genome expansion due to proliferation of transposable elements or gene duplications may affect the ability to regulate and fine-tune transcriptional profiles. We used 18 populations of the seed beetle Callosobruchus maculatus, which differ in GS by up to 4.5%, and exposed adults and juveniles to environmental stress in a series of experiments where stage-specific fitness was assayed. We found that populations with larger genomes were indeed better buffered against environmental stress for adult, but not for juvenile, fitness. The genetic correlation across populations between GS and canalization of adult fitness is consistent with a role for natural selection in the evolution of GS.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Selección Genética
4.
Genome Biol Evol ; 15(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36542472

RESUMEN

The patterns of reproductive timing and senescence vary within and across species owing to differences in reproductive strategies, but our understanding of the molecular underpinnings of such variation is incomplete. This is perhaps particularly true for sex differences. We investigated the evolution of sex-specific gene expression associated with life history divergence in replicated populations of the seed beetle Acanthoscelides obtectus, experimentally evolving under (E)arly or (L)ate life reproduction for >200 generations which has resulted in strongly divergent life histories. We detected 1,646 genes that were differentially expressed in E and L lines, consistent with a highly polygenic basis of life history evolution. Only 30% of differentially expressed genes were similarly affected in males and females. The evolution of long life was associated with significantly reduced sex differences in expression, especially in non-reproductive tissues. The expression differences were overall more pronounced in females, in accordance with their greater phenotypic divergence in lifespan. Functional enrichment analysis revealed differences between E and L beetles in gene categories previously implicated in aging, such as mitochondrial function and defense response. The results show that divergent life history evolution can be associated with profound changes in gene expression that alter the transcriptome in a sex-specific way, highlighting the importance of understanding the mechanisms of aging in each sex.


Asunto(s)
Escarabajos , Femenino , Masculino , Animales , Escarabajos/genética , Envejecimiento/fisiología , Longevidad/genética , Reproducción/fisiología , Expresión Génica
5.
Ecol Evol ; 12(10): e9440, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36311399

RESUMEN

Efforts to unravel the genomic basis of incipient speciation are hampered by a mismatch between our toolkit and our understanding of the ecology and genetics of adaptation. While the former is focused on detecting selective sweeps involving few independently acting or linked speciation genes, the latter states that divergence typically occurs in polygenic traits under stabilizing selection. Here, we ask whether a role of stabilizing selection on polygenic traits in population divergence may be unveiled by using a phenotypically informed integrative approach, based on genome-wide variation segregating in divergent populations. We compare three divergent populations of seed beetles (Callosobruchus maculatus) where previous work has demonstrated a prominent role for stabilizing selection on, and population divergence in, key life history traits that reflect rate-dependent metabolic processes. We derive and assess predictions regarding the expected pattern of covariation between genetic variation segregating within populations and genetic differentiation between populations. Population differentiation was considerable (mean F ST = 0.23-0.26) and was primarily built by genes showing high selective constraints and an imbalance in inferred selection in different populations (positive Tajima's D NS in one and negative in one), and this set of genes was enriched with genes with a metabolic function. Repeatability of relative population differentiation was low at the level of individual genes but higher at the level of broad functional classes, again spotlighting metabolic genes. Absolute differentiation (d XY) showed a very different general pattern at this scale of divergence, more consistent with an important role for genetic drift. Although our exploration is consistent with stabilizing selection on polygenic metabolic phenotypes as an important engine of genome-wide relative population divergence and incipient speciation in our study system, we note that it is exceedingly difficult to firmly exclude other scenarios.

6.
Proc Natl Acad Sci U S A ; 119(33): e2205564119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943983

RESUMEN

Male-female coevolution has taken different paths among closely related species, but our understanding of the factors that govern its direction is limited. While it is clear that ecological factors, life history, and the economics of reproduction are connected, the divergent links are often obscure. We propose that a complete understanding requires the conceptual integration of metabolic phenotypes. Metabolic rate, a nexus of life history evolution, is constrained by ecological factors and may exert important direct and indirect effects on the evolution of sexual dimorphism. We performed standardized experiments in 12 seed beetle species to gain a rich set of sex-specific measures of metabolic phenotypes, life history traits, and the economics of mating and analyzed our multivariate data using phylogenetic comparative methods. Resting metabolic rate (RMR) showed extensive evolution and evolved more rapidly in males than in females. The evolution of RMR was tightly coupled with a suite of life history traits, describing a pace-of-life syndrome (POLS), with indirect effects on the economics of mating. As predicted, high resource competition was associated with a low RMR and a slow POLS. The cost of mating showed sexually antagonistic coevolution, a hallmark of sexual conflict. The sex-specific costs and benefits of mating were predictably related to ecology, primarily through the evolution of male ejaculate size. Overall, our results support the tenet that resource competition affects metabolic processes that, in turn, have predictable effects on both life history evolution and reproduction, such that ecology shows both direct and indirect effects on male-female coevolution.


Asunto(s)
Metabolismo Basal , Evolución Biológica , Escarabajos , Conducta Sexual Animal , Animales , Escarabajos/metabolismo , Femenino , Masculino , Filogenia , Reproducción
7.
Insect Biochem Mol Biol ; 140: 103681, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800642

RESUMEN

Oxygen (O2) plays an essential role in aerobic organisms including terrestrial insects. Under hypoxic stress, the cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth. However, larvae, particularly 4th instar larvae exhibit very high tolerance to hypoxia and can recover normal growth once brought to normoxia. To better understand the molecular mechanism that enables insects to cope with low O2 stress, we performed RNA-seq to distinguish hypoxia-responsive genes in midguts and subsequently identified potential common cis-elements in promoters of hypoxia-induced and -repressed genes, respectively. Selected elements were subjected to gel-shift and transient transfection assays to confirm their cis-regulatory function. Of these putative common cis-elements, AREB6 appeared to regulate the expression of CmLPCAT and CmScylla, two hypoxia-induced genes. CmZFH, the putative AREB6-binding protein, was hypoxia-inducible. Transient expression of CmZFH in Drosophila S2 cells activated CmLPCAT and CmScylla, and their induction was likely through interaction of CmZFH with AREB6. Binding to AREB6 was further confirmed by bacterially expressed CmZFH recombinant protein. Deletion analyses indicated that the N-terminal zinc-finger cluster of CmZFH was the key AREB6-binding domain. Through in silico and experimental exploration, we discovered novel transcriptional regulatory components associated with gene expression dynamics under hypoxia that facilitated insect survival.


Asunto(s)
Escarabajos , Hipoxia/genética , Animales , Escarabajos/genética , Escarabajos/fisiología , Genes de Insecto , Insectos , Larva/genética , Larva/fisiología , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dedos de Zinc/genética
8.
Evol Lett ; 5(4): 328-343, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367659

RESUMEN

Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the effects of the many rare and partially recessive deleterious alleles that make up the main part of a population's mutation load. Here, we exposed the partially recessive genetic load of a population of Callosobruchus maculatus seed beetles via successive generations of inbreeding, and quantified its effects by measuring heterosis-the increase in fitness experienced when masking the effects of deleterious alleles by heterozygosity-in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime reproductive success (i.e., fitness) was measured in male and female outcrossed F1s as well as inbred parental "selfs," and we estimated the 4 × 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population's mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.

9.
Proc Biol Sci ; 288(1954): 20211068, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34229496

RESUMEN

Our understanding of coevolution between male genitalia and female traits remains incomplete. This is perhaps especially true for genital traits that cause internal injuries in females, such as the spiny genitalia of seed beetles where males with relatively long spines enjoy a high relative fertilization success. We report on a new set of experiments, based on extant selection lines, aimed at assessing the effects of long male spines on females in Callosobruchus maculatus. We first draw on an earlier study using microscale laser surgery, and demonstrate that genital spines have a direct negative (sexually antagonistic) effect on female fecundity. We then ask whether artificial selection for long versus short spines resulted in direct or indirect effects on female lifetime offspring production. Reference females mating with males from long-spine lines had higher offspring production, presumably due to an elevated allocation in males to those ejaculate components that are beneficial to females. Remarkably, selection for long male genital spines also resulted in an evolutionary increase in female offspring production as a correlated response. Our findings thus suggest that female traits that affect their response to male spines are both under direct selection to minimize harm but are also under indirect selection (a good genes effect), consistent with the evolution of mating and fertilization biases being affected by several simultaneous processes.


Asunto(s)
Escarabajos , Animales , Evolución Biológica , Escarabajos/genética , Femenino , Genitales , Genitales Masculinos , Masculino , Reproducción , Selección Genética , Conducta Sexual Animal
10.
BMC Biol ; 19(1): 114, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078377

RESUMEN

BACKGROUND: Sexual dimorphism in immunity is believed to reflect sex differences in reproductive strategies and trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex differences in immunity as well as associated host-pathogen dynamics. Yet, experimental evidence linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. RESULTS: We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males. This difference is accompanied by concomitant sex differences in the expression of genes in the prophenoloxidase activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (resulting in low remating rates and reduced sexual conflict relative to natural polygamy) rapidly decreases female (but not male) PO activity. Moreover, monogamous females had evolved increased tolerance to bacterial infection unrelated to mating, implying that female responses to costly mating may trade off with other aspects of immune defence, an hypothesis which broadly accords with the documented sex differences in gene expression. Finally, female (but not male) PO activity shows correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. CONCLUSIONS: Our study provides insights into the links between sexual conflict and sexual dimorphism in immunity and suggests that selection pressures moulded by mating interactions can lead to a sex-specific mosaic of immune responses with important implications for host-pathogen dynamics in sexually reproducing organisms.


Asunto(s)
Caracteres Sexuales , Animales , Evolución Biológica , Escarabajos , Femenino , Masculino , Filogenia , Conducta Sexual Animal
11.
Ecol Evol ; 10(20): 11387-11398, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144972

RESUMEN

Mitochondrial DNA (mtDNA) consists of few but vital maternally inherited genes that interact closely with nuclear genes to produce cellular energy. How important mtDNA polymorphism is for adaptation is still unclear. The assumption in population genetic studies is often that segregating mtDNA variation is selectively neutral. This contrasts with empirical observations of mtDNA haplotypes affecting fitness-related traits and thermal sensitivity, and latitudinal clines in mtDNA haplotype frequencies. Here, we experimentally test whether ambient temperature affects selection on mtDNA variation, and whether such thermal effects are influenced by intergenomic epistasis due to interactions between mitochondrial and nuclear genes, using replicated experimental evolution in Callosobruchus maculatus seed beetle populations seeded with a mixture of different mtDNA haplotypes. We also test for sex-specific consequences of mtDNA evolution on reproductive success, given that mtDNA mutations can have sexually antagonistic fitness effects. Our results demonstrate natural selection on mtDNA haplotypes, with some support for thermal environment influencing mtDNA evolution through mitonuclear epistasis. The changes in male and female reproductive fitness were both aligned with changes in mtDNA haplotype frequencies, suggesting that natural selection on mtDNA is sexually concordant in stressful thermal environments. We discuss the implications of our findings for the evolution of mtDNA.

12.
BMC Evol Biol ; 20(1): 20, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019493

RESUMEN

BACKGROUND: Understanding the forces that maintain diversity across a range of scales is at the very heart of biology. Frequency-dependent processes are generally recognized as the most central process for the maintenance of ecological diversity. The same is, however, not generally true for genetic diversity. Negative frequency dependent selection, where rare genotypes have an advantage, is often regarded as a relatively weak force in maintaining genetic variation in life history traits because recombination disassociates alleles across many genes. Yet, many regions of the genome show low rates of recombination and genetic variation in such regions (i.e., supergenes) may in theory be upheld by frequency dependent selection. RESULTS: We studied what is essentially a ubiquitous life history supergene (i.e., mitochondrial DNA) in the fruit fly Drosophila subobscura, showing sympatric polymorphism with two main mtDNA genotypes co-occurring in populations world-wide. Using an experimental evolution approach involving manipulations of genotype starting frequencies, we show that negative frequency dependent selection indeed acts to maintain genetic variation in this region. Moreover, the strength of selection was affected by food resource conditions. CONCLUSIONS: Our work provides novel experimental support for the view that balancing selection through negative frequency dependency acts to maintain genetic variation in life history genes. We suggest that the emergence of negative frequency dependent selection on mtDNA is symptomatic of the fundamental link between ecological processes related to resource use and the maintenance of genetic variation.


Asunto(s)
ADN Mitocondrial/genética , Polimorfismo Genético , Selección Genética , Análisis de Varianza , Animales , Drosophila/genética , Femenino , Haplotipos/genética , Masculino , Fenotipo , Simpatría
13.
Trends Ecol Evol ; 35(4): 329-335, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31982147

RESUMEN

Statistics matter greatly in biology, whether we like it or not. As a discipline with an empirical inclination, we are faced with data every day and we rely on inferential statistical models to make sense of it and to provide us with novel insights. Much of the time, the growing level of complexity and sophistication of the models we put to use in ecology and evolution have led to more appropriate analyses of our data. However, this is not always the case. Here, I draw attention to a classic flaw in inferential statistics that has resurfaced in a new flavor as a result of increased reliance on complex linear mixed models - the multifaceted and disturbingly persistent problem of pseudoreplication.


Asunto(s)
Ecología , Proyectos de Investigación , Modelos Lineales , Modelos Estadísticos
14.
Nat Ecol Evol ; 3(12): 1725-1730, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740847

RESUMEN

Genes with sex-biased expression show a number of unique properties and this has been seen as evidence for conflicting selection pressures in males and females, forming a genetic 'tug-of-war' between the sexes. However, we lack studies of taxa where an understanding of conflicting phenotypic selection in the sexes has been linked with studies of genomic signatures of sexual conflict. Here, we provide such a link. We used an insect where sexual conflict is unusually well understood, the seed beetle Callosobruchus maculatus, to test for molecular genetic signals of sexual conflict across genes with varying degrees of sex-bias in expression. We sequenced, assembled and annotated its genome and performed population resequencing of three divergent populations. Sex-biased genes showed increased levels of genetic diversity and bore a remarkably clear footprint of relaxed purifying selection. Yet, segregating genetic variation was also affected by balancing selection in weakly female-biased genes, while male-biased genes showed signs of overall purifying selection. Female-biased genes contributed disproportionally to shared polymorphism across populations, while male-biased genes, male seminal fluid protein genes and sex-linked genes did not. Genes showing genomic signatures consistent with sexual conflict generally matched life-history phenotypes known to experience sexually antagonistic selection in this species. Our results highlight metabolic and reproductive processes, confirming the key role of general life-history traits in sexual conflict.


Asunto(s)
Selección Genética , Caracteres Sexuales , Femenino , Genoma , Genómica , Masculino , Fenotipo
15.
Evol Appl ; 12(7): 1371-1384, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31417621

RESUMEN

Whether sexual selection impedes or aids adaptation has become an outstanding question in times of rapid environmental change and parallels the debate about how the evolution of individual traits impacts on population dynamics. The net effect of sexual selection on population viability results from a balance between genetic benefits of "good-genes" effects and costs of sexual conflict. Depending on how these facets of sexual selection are affected under environmental change, extinction of maladapted populations could be either avoided or accelerated. Here, we evolved seed beetles under three alternative mating regimes to disentangle the contributions of sexual selection, fecundity selection, and male-female coevolution to individual reproductive success and population fitness. We compared these contributions between the ancestral environment and two stressful environments (elevated temperature and a host plant shift). We found evidence that sexual selection on males had positive genetic effects on female fitness components across environments, supporting good-genes sexual selection. Interestingly, however, when males evolved under sexual selection with fecundity selection removed, they became more robust to both temperature and host plant stress compared to their conspecific females and males from the other evolution regimes that applied fecundity selection. We quantified the population-level consequences of this sex-specific adaptation and found evidence that the cost of sociosexual interactions in terms of reduced offspring production was higher in the regime applying only sexual selection to males. Moreover, the cost tended to be more pronounced at the elevated temperature to which males from the regime were more robust compared to their conspecific females. These results illustrate the tension between individual-level adaptation and population-level viability in sexually reproducing species and suggest that the relative efficacies of sexual selection and fecundity selection can cause inherent sex differences in environmental robustness that may impact demography of maladapted populations.

16.
Proc Biol Sci ; 286(1896): 20182313, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963930

RESUMEN

Sexual selection can promote adaptation if sexually selected traits are reliable indicators of genetic quality. Moreover, models of good genes sexual selection suggest that, by operating more strongly in males than in females, sexual selection may purge deleterious alleles from the population at a low demographic cost, offering an evolutionary benefit to sexually reproducing populations. Here, we investigate the effect of good genes sexual selection on adaptation following environmental change. We show that the strength of sexual selection is often weakened relative to fecundity selection, reducing the suggested benefit of sexual reproduction. This result is a consequence of incorporating a simple and general mechanistic basis for how sexual selection operates under different mating systems, rendering selection on males frequency-dependent and dynamic with respect to the degree of environmental change. Our model illustrates that incorporating the mechanism of selection is necessary to predict evolutionary outcomes and highlights the need to substantiate previous theoretical claims with further work on how sexual selection operates in changing environments.


Asunto(s)
Adaptación Biológica/genética , Ambiente , Preferencia en el Apareamiento Animal , Selección Genética , Animales , Evolución Biológica , Modelos Genéticos
17.
Insect Biochem Mol Biol ; 104: 50-57, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529580

RESUMEN

The male ejaculate contains a multitude of seminal fluid proteins (SFPs), many of which are key reproductive molecules, as well as sperm. However, the identification of SFPs is notoriously difficult and a detailed understanding of this complex phenotype has only been achieved in a few model species. We employed a recently developed proteomic method involving whole-organism stable isotope labelling coupled with proteomic and transcriptomic analyses to characterize ejaculate proteins in the seed beetle Callosobruchus maculatus. We identified 317 proteins that were transferred to females at mating, and a great majority of these showed signals of secretion and were highly male-biased in expression in the abdomen. These male-derived proteins were enriched with proteins involved in general metabolic and catabolic processes but also with proteolytic enzymes and proteins involved in protection against oxidative stress. Thirty-seven proteins showed significant homology with SFPs previously identified in other insects. However, no less than 92 C. maculatus ejaculate proteins were entirely novel, receiving no significant blast hits and lacking homologs in extant data bases, consistent with a rapid and divergent evolution of SFPs. We used 3D micro-tomography in conjunction with proteomic methods to identify 5 distinct pairs of male accessory reproductive glands and to show that certain ejaculate proteins were only recovered in certain male glands. Finally, we provide a tentative list of 231 candidate female-derived reproductive proteins, some of which are likely important in ejaculate processing and/or sperm storage.


Asunto(s)
Escarabajos/metabolismo , Genitales Masculinos/metabolismo , Proteínas de Insectos/metabolismo , Proteómica , Semen/metabolismo , Espermatozoides/metabolismo , Animales , Escarabajos/genética , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Masculino
18.
PLoS Biol ; 16(12): e2006810, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30533008

RESUMEN

The maintenance of genetic variance in fitness represents one of the most longstanding enigmas in evolutionary biology. Sexually antagonistic (SA) selection may contribute substantially to maintaining genetic variance in fitness by maintaining alternative alleles with opposite fitness effects in the two sexes. This is especially likely if such SA loci exhibit sex-specific dominance reversal (SSDR)-wherein the allele that benefits a given sex is also dominant in that sex-which would generate balancing selection and maintain stable SA polymorphisms for fitness. However, direct empirical tests of SSDR for fitness are currently lacking. Here, we performed a full diallel cross among isogenic strains derived from a natural population of the seed beetle Callosobruchus maculatus that is known to exhibit SA genetic variance in fitness. We measured sex-specific competitive lifetime reproductive success (i.e., fitness) in >500 sex-by-genotype F1 combinations and found that segregating genetic variation in fitness exhibited pronounced contributions from dominance variance and sex-specific dominance variance. A closer inspection of the nature of dominance variance revealed that the fixed allelic variation captured within each strain tended to be dominant in one sex but recessive in the other, revealing genome-wide SSDR for SA polymorphisms underlying fitness. Our findings suggest that SA balancing selection could play an underappreciated role in maintaining fitness variance in natural populations.


Asunto(s)
Escarabajos/genética , Aptitud Genética/genética , Selección Genética/genética , Alelos , Animales , Evolución Biológica , Femenino , Frecuencia de los Genes/genética , Variación Genética/genética , Genotipo , Masculino , Modelos Genéticos , Fenotipo , Polimorfismo Genético/genética , Reproducción/genética , Caracteres Sexuales , Factores Sexuales
19.
Evolution ; 72(3): 518-530, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29238970

RESUMEN

Whether sexual selection generally promotes or impedes population persistence remains an open question. Intralocus sexual conflict (IaSC) can render sexual selection in males detrimental to the population by increasing the frequency of alleles with positive effects on male reproductive success but negative effects on female fecundity. Recent modeling based on fitness landscape theory, however, indicates that the relative impact of IaSC may be reduced in maladapted populations and that sexual selection therefore might promote adaptation when it is most needed. Here, we test this prediction using bean beetles that had undergone 80 generations of experimental evolution on two alternative host plants. We isolated and assessed the effect of maladaptation on sex-specific strengths of selection and IaSC by cross-rearing the two experimental evolution regimes on the alternative hosts and estimating within-population genetic (co)variance for fitness in males and females. Two key predictions were upheld: males generally experienced stronger selection compared to females and maladaptation increased selection in females. However, maladaptation consistently decreased male-bias in the strength of selection and IaSC was not reduced in maladapted populations. These findings imply that sexual selection can be disrupted in stressful environmental conditions, thus reducing one of the potential benefits of sexual reproduction in maladapted populations.


Asunto(s)
Adaptación Biológica , Escarabajos/fisiología , Preferencia en el Apareamiento Animal , Animales , Estrés Fisiológico
20.
Genome Biol Evol ; 9(11): 3054-3058, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29106528

RESUMEN

The central role of the mitochondrion for cellular and organismal metabolism is well known, yet its functional role in evolution has rarely been featured in leading international conferences. Moreover, the contribution of mitochondrial genetics to complex disease phenotypes is particularly important, and although major advances have been made in the field of genomics, mitochondrial genomic data have in many cases been overlooked. Accumulating data and new knowledge support a major contribution of this maternally inherited genome, and its interactions with the nucleus, to both major evolutionary processes and diverse disease phenotypes. These advances encouraged us to assemble the first Mitochondrial Genomics and Evolution (MGE) meeting-an SMBE satellite and Israeli Science foundation international conference (Israel, September 2017). Here, we report the content and outcome of the MGE meeting (https://www.mge2017.com/; last accessed November 5, 2017).


Asunto(s)
Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Mitocondrias/genética , Núcleo Celular/genética , ADN Mitocondrial/genética , Humanos , Herencia Materna , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...