Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 194: 108043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382821

RESUMEN

European marbled newts come in two species that have abutting ranges. The northern species, Triturus marmoratus, is found in France and the northern part of the Iberian Peninsula, whereas the southern species, T. pygmaeus, is found in the southwestern corner of the Iberian Peninsula. We study the intraspecific genetic differentiation of the group because morphological data show geographical variation and because the Iberian Peninsula is a recognized center of speciation and intraspecific genetic diversity for all kinds of organisms, amphibians included. We use target enrichment by sequence capture to generate c. 7 k nuclear DNA markers. We observe limited genetic exchange between the species, which confirms their distinctiveness. Both species show substantial genetic structuring that is only in part mirrored by morphological variation. Genetically differentiated groups are found in the south (T. marmoratus) and west (T. pygmaeus) of the species ranges. Our observations highlight the position of the Iberian Peninsula as a hotspot for genetic differentiation.

2.
Ecol Evol ; 13(9): e10442, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664506

RESUMEN

When two putatively cryptic species meet in nature, hybrid zone analysis can be used to estimate the extent of gene flow between them. Two recently recognized cryptic species of banded newt (genus Ommatotriton) are suspected to meet in parapatry in Anatolia, but a formal hybrid zone analysis has never been conducted. We sample populations throughout the range, with a focus on the supposed contact zone, and genotype them for 31 nuclear DNA SNP markers and mtDNA. We determine the degree of genetic admixture, introgression, and niche overlap. We reveal an extremely narrow hybrid zone, suggesting strong selection against hybrids, in line with species status. The hybrid zone does not appear to be positioned at an ecological barrier, and there is significant niche overlap. Therefore, the hybrid zone is best classified as a tension zone, maintained by intrinsic selection against hybrids. While the two banded newt species can evidently backcross, we see negligible introgression and the pattern is symmetric, which we interpret as supporting the fact that the hybrid zone has been practically stationary since its origin (while extensive hybrid zone movement has been suggested in other newt genera in the region). Our study illustrates the use of hybrid zone analysis to test cryptic species status.

3.
J Exp Zool B Mol Dev Evol ; 340(6): 403-413, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37272301

RESUMEN

Serially homologous structures may have complex patterns of regionalization and morphological integration, influenced by developmental Hox gene expression and functional constraints. The vertebral column, consisting of a number of repeated, developmentally constrained, and highly integrated units-vertebrae-is such a complex serially homologous structure. Functional diversification increases regionalization and modularity of the vertebral column, particularly in mammals. For salamanders, three concepts of regionalization of the vertebral column have been proposed, recognizing one, two, or three presacral regions. Using three-dimensional geometric morphometrics on vertebra models acquired with microcomputerized tomography scanning, we explored the covariation of vertebrae in four closely related taxa of small-bodied newts in the genus Lissotriton. The data were analyzed by segmented linear regression to explore patterns of vertebral regionalization and by a two-block partial least squares method to test for morphological integration. All taxa show a morphological shift posterior to the fifth trunk vertebra, which corresponds to the two-region concept. However, morphological integration is found to be strongest in the mid-trunk. Taken jointly, these results indicate a highly integrated presacral vertebral column with a subtle two-region differentiation. The results are discussed in relation to specific functional requirements, developmental and phylogenetic constraints, and specific requirements posed by a biphasic life cycle and different locomotor modes (swimming vs. walking). Further research should be conducted on different ontogenetic stages and closely related but ecologically differentiated species.


Asunto(s)
Mamíferos , Columna Vertebral , Animales , Filogenia , Columna Vertebral/anatomía & histología , Salamandridae , Genes Homeobox , Evolución Biológica
4.
Anat Rec (Hoboken) ; 306(8): 1981-1989, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36753449

RESUMEN

Micro-computed tomography is a powerful tool toward the detailed reconstruction of internal and external morphology, in particular for ossified and other dense tissues. Here, we document and compare the level of calcification in the skin of the head and the parotoids (the external skin glands) in males and females of common and spined toads, Bufo bufo and B. spinosus. In some anurans, including Bufo species, a specific acellular calcified tissue layer within the dermis has been documented (the Eberth-Katschenko, or EK-layer). By a combination of micro-computed tomography and classical histology, we detected additional calcium deposits located in the dermal layer stratum spongiosum, positioned above the EK-layer. We showed that the level of calcification and the presence of additional calcium deposits are size and sex related, increasing in the order B. bufo males, B. spinosus males, B. bufo females to B. spinosus females. The last of these groups is the least variable. Bufo spinosus females have dense calcium deposits in the parotoids and the dorsal and ventral skin. Three-dimensional volume renderings and cross-sectional slices obtained by micro-CT scanning indicate that this approach is a promising technique for further studies on bufonid skin anatomy and geographic variation in skin calcification.


Asunto(s)
Bufo bufo , Calcio , Masculino , Animales , Femenino , Microtomografía por Rayos X , Estudios Transversales , Bufonidae
5.
Mol Ecol ; 32(4): 867-880, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458894

RESUMEN

The major histocompatibility complex (MHC) genes are central to the adaptive immune response in vertebrates. Selection generally maintains high MHC variation because the spectrum of recognized pathogens depends on MHC polymorphism. Novel alleles favoured by selection originate by interallelic recombination or de novo mutations but may also be acquired by introgression from related species. However, the extent and prevalence of MHC introgression remain an open question. In this study, we tested for MHC introgression in six hybrid zones formed by six Triturus newt species. We sequenced and genotyped the polymorphic second exons of the MHC class I and II genes and compared their interspecific similarity at various distances from the centre of the hybrid zone. We found evidence for introgression of both MHC classes in the majority of examined hybrid zones, with support for a more substantial class I introgression. Furthermore, the overall MHC allele sharing outside of hybrid zones was elevated between pairs of Triturus species with abutting ranges, regardless of the phylogenetic distance between them. No effect of past hybrid zone movement on MHC allele sharing was found. Finally, using previously published genome-wide data, we demonstrated that MHC introgression was more extensive than genome-wide introgression, supporting its adaptive potential. Our study thus provides evidence for the prevalence of MHC introgression across multiple Triturus hybrid zones, indicating that MHC introgression between divergent hybridizing species may be widespread and adaptive.


Asunto(s)
Hibridación Genética , Triturus , Animales , Triturus/genética , Filogenia , Salamandridae/genética , Alelos
6.
Science ; 376(6600): 1459-1466, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35737773

RESUMEN

Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.


Asunto(s)
Envejecimiento , Anfibios , Evolución Biológica , Reptiles , Anfibios/clasificación , Anfibios/fisiología , Animales , Longevidad , Filogenia , Reptiles/clasificación , Reptiles/fisiología
7.
J Evol Biol ; 35(3): 400-412, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35043504

RESUMEN

Theoretical and empirical studies suggest that the structure and position of hybrid zones can change over time. Evidence for moving hybrid zones has been directly inferred by repeated sampling over time, or indirectly through the detection of genetic footprints left by the receding species and the resulting asymmetric patterns of introgression across markers. We here investigate a hybrid zone formed by two subspecies of the Iberian golden-striped salamander, Chioglossa lusitanica, using a panel of 35 nuclear loci (31 SNPs and 4 allozymes) and one mitochondrial locus in a transect in central Portugal. We found concordant and coincident clines for most of the nuclear loci (n = 22, 63%), defining a narrow hybrid zone of ca. 6 km wide, with the centre positioned ca. 15 km south of the Mondego River. Asymmetric introgression was observed at another 14 loci. Their clines are displaced towards the north, with positions located either close to the Mondego River (n = 6) or further northwards (n = 8). We interpret these profiles as genetic traces of the southward displacement of C. lusitanica lusitanica by C. l. longipes over the wider Mondego River valley. We noted the absence of significant linkage disequilibrium, and we inferred low levels of effective selection per locus against hybrids, suggesting that introgression in the area of species replacement occurred under a neutral diffusion process. A species distribution model suggests that the C. lusitanica hybrid zone coincides with a narrow corridor of fragmented habitat. From the position of the displaced clines, we infer that patches of locally suitable habitat trapped some genetic variants that became disassociated from the southward moving hybrid zone. This study highlights the influence of habitat availability on hybrid zone movement.


Asunto(s)
ADN Mitocondrial , Urodelos , Animales , ADN Mitocondrial/genética , Ecosistema , Hibridación Genética , Desequilibrio de Ligamiento , Salamandridae/genética , Urodelos/genética
8.
J Anat ; 240(4): 639-646, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34761388

RESUMEN

The salamander vertebral column is largely undifferentiated with a series of more or less uniform rib-bearing presacral vertebrae traditionally designated as the trunk region. We explored regionalization of the salamander trunk in seven species and two subspecies of the salamander genus Lissotriton by the combination of microcomputed tomography scanning and geometric morphometrics. The detailed information on trunk vertebral shape was subjected to a multidimensional cluster analysis and a phenotypic trajectory analysis. With these complementary approaches, we observed a clear morphological regionalization. Clustering analysis showed that the anterior trunk vertebrae (T1 and T2) have distinct morphologies that are shared by all taxa, whereas the subsequent, more posterior vertebrae show significant disparity between species. The phenotypic trajectory analysis revealed that all taxa share a common pattern and amount of shape change along the trunk region. Altogether, our results support the hypothesis of a conserved anterior-posterior developmental patterning which can be associated with different functional demands, reflecting (sub)species' and, possibly, regional ecological divergences within species.


Asunto(s)
Columna Vertebral , Torso , Animales , Evolución Biológica , Salamandridae , Columna Vertebral/anatomía & histología , Columna Vertebral/diagnóstico por imagen , Microtomografía por Rayos X
9.
Mol Phylogenet Evol ; 167: 107361, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775056

RESUMEN

Technological developments now make it possible to employ many markers for many individuals in a phylogeographic setting, even for taxa with large and complex genomes such as salamanders. The banded newt (genus Ommatotriton) from the Near East has been proposed to contain three species (O. nesterovi, O. ophryticus and O. vittatus) with unclear phylogenetic relationships, apparently limited interspecific gene flow and deep intraspecific geographic mtDNA structure. We use parallel tagged amplicon sequencing to obtain 177 nuclear DNA markers for 35 banded newts sampled throughout the range. We determine population structure (with Bayesian clustering and principal component analysis), interspecific gene flow (by determining the distribution of species-diagnostic alleles) and phylogenetic relationships (by maximum likelihood inference of concatenated sequence data and based on a summary-coalescent approach). We confirm that the three proposed species are genetically distinct. A sister relationship between O. nesterovi and O. ophryticus is suggested. We find evidence for introgression between O. nesterovi and O. ophryticus, but this is geographically limited. Intraspecific structuring is extensive, with the only recognized banded newt subspecies, O. vittatus cilicensis, representing the most distinct lineage below the species level. While mtDNA mostly mirrors the pattern observed in nuclear DNA, all banded newt species show mito-nuclear discordance as well.


Asunto(s)
Flujo Génico , Filogenia , Salamandridae , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Estructuras Genéticas , Filogeografía , Salamandridae/clasificación , Salamandridae/genética , Análisis de Secuencia de ADN
10.
Evolution ; 76(2): 346-356, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878663

RESUMEN

Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the "unguarded X/Z effect") or repeat-rich Y/W chromosome (the "toxic Y/W effect") could accelerate aging in the heterogametic sex in some vertebrate clades.


Asunto(s)
Caracteres Sexuales , Cromosomas Sexuales , Envejecimiento/genética , Anfibios/genética , Animales , Femenino , Masculino , Procesos de Determinación del Sexo , Cromosoma Y
11.
Evol Appl ; 14(12): 2784-2793, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34950229

RESUMEN

Deeply diverged yet hybridizing species provide a system to investigate the final stages of the speciation process. We study a hybridizing pair of salamander species-the morphologically and genetically drastically different newts Triturus cristatus and T. marmoratus-with a panel of 32 nuclear and mitochondrial genetic markers. Morphologically identified hybrids are mostly of the F1 generation and mothered by T. cristatus. The sex ratio of the F1 hybrid class is reciprocally skewed, with a preponderance of females in T. cristatus-mothered hybrids and males in T. marmoratus-mothered hybrids. This amounts to the Haldane effect operating in one direction of the cross. Deeper generation hybrids are occasionally produced, possibly including F1 hybrid × backcross hybrid offspring. Interspecific gene flow is low, yet skewed toward T. cristatus. This asymmetry may be caused by hybrid zone movement, with the superseding species being predisposed to introgression. The persisting gene flow between deeply differentiated species supports the notion that full genetic isolation may be selected against. Conversely, published morphological data suggest that introgressive hybridization is detrimental, with digital malformations occurring more frequently in the area of sympatry. Finally, to assist field identification, both within the area of natural range overlap and concerning anthropogenic introductions elsewhere, we document the phenotypical variation of two generations of hybrids compared with both parental species. We suggest that fluctuating range boundaries, ecological segregation, cytonuclear incompatibilities and hybrid breakdown through Bateson-Dobzhansky-Muller incompatibilities all contribute to species integrity, despite incomplete isolation during secondary contact.

14.
Ecol Evol ; 11(1): 402-414, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437438

RESUMEN

Secondary contact between closely related species can lead to the formation of hybrid zones, allowing for interspecific gene flow. Hybrid zone movement can take place if one of the species possesses a competitive advantage over the other, ultimately resulting in species replacement. Such hybrid zone displacement is predicted to leave a genomic footprint across the landscape in the form of asymmetric gene flow (or introgression) of selectively neutral alleles from the displaced to the advancing species. Hybrid zone movement has been suggested for marbled newts in the Iberian Peninsula, supported by asymmetric gene flow and a distribution relict (i.e., an enclave) of Triturus marmoratus in the range of T. pygmaeus. We developed a panel of nuclear and mitochondrial SNP markers to test for the presence of a T. marmoratus genomic footprint in the Lisbon peninsula, south of the enclave. We found no additional populations of T. marmoratus. Analysis with the software Structure showed no genetic traces of T. marmoratus in T. pygmaeus. A principal component analysis showed some variation within the local T. pygmaeus, but it is unclear if this represents introgression from T. marmoratus. The results may be explained by (a) species replacement without introgressive hybridization and (b) displacement with hybridization followed by the near-complete erosion of the footprint by purifying selection. We predict that testing for a genomic footprint north of the reported enclave would confirm that species replacement in these marbled newts occurred with hybridization.

15.
Sci Rep ; 11(1): 260, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420098

RESUMEN

Genetic diversity feeds the evolutionary process and allows populations to adapt to environmental changes. However, we still lack a thorough understanding of why hotspots of genetic diversity are so 'hot'. Here, we analysed the relative contribution of bioclimatic stability and genetic admixture between divergent lineages in shaping spatial patterns of genetic diversity in the common toad Bufo bufo along the Italian peninsula. We combined population genetic, phylogeographic and species distribution modelling (SDM) approaches to map ancestral areas, glacial refugia, and secondary contact zones. We consistently identified three phylogeographic lineages, distributed in northern, central and southern Italy. These lineages expanded from their ancestral areas and established secondary contact zones, before the last interglacial. SDM identified widespread glacial refugia in peninsular Italy, sometimes located under the present-day sea-level. Generalized linear models indicated genetic admixture as the only significant predictor of the levels of population genetic diversity. Our results show that glacial refugia contributed to preserving both levels and patterns of genetic diversity across glacial-interglacial cycles, but not to their formation, and highlight a general principle emerging in Mediterranean species: higher levels of genetic diversity mark populations with substantial contributions from multiple genetic lineages, irrespective of the location of glacial refugia.


Asunto(s)
Bufo bufo/genética , ADN Mitocondrial/genética , Variación Genética , Animales , Teorema de Bayes , Evolución Biológica , Genética de Población , Haplotipos , Cubierta de Hielo , Italia , Repeticiones de Microsatélite/genética , Modelos Genéticos , Filogeografía , Refugio de Fauna
16.
Genome Biol Evol ; 13(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33501944

RESUMEN

Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.


Asunto(s)
Proteínas Anfibias/genética , Presentación de Antígeno/genética , Evolución Molecular , Genes MHC Clase I , Urodelos/genética , Proteínas Anfibias/química , Proteínas Anfibias/clasificación , Animales , Duplicación de Gen , Ligamiento Genético , Urodelos/inmunología
17.
Mol Phylogenet Evol ; 155: 106967, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33031928

RESUMEN

Hybridization can leave genealogical signatures in an organism's genome, originating from the parental lineages and persisting over time. This potentially confounds phylogenetic inference methods that aim to represent evolution as a strictly bifurcating tree. We apply a phylotranscriptomic approach to study the evolutionary history of, and test for inter-lineage introgression in the Salamandridae, a Holarctic salamanders group of interest in studies of toxicity and aposematism, courtship behavior, and molecular evolution. Although the relationships between the 21 currently recognized salamandrid genera have been the subject of numerous molecular phylogenetic studies, some branches have remained controversial and sometimes affected by discordances between mitochondrial vs. nuclear trees. To resolve the phylogeny of this family, and understand the source of mito-nuclear discordance, we generated new transcriptomic (RNAseq) data for 20 salamandrids and used these along with published data, including 28 mitochondrial genomes, to obtain a comprehensive nuclear and mitochondrial perspective on salamandrid evolution. Our final phylotranscriptomic data set included 5455 gene alignments for 40 species representing 17 of the 21 salamandrid genera. Using concatenation and species-tree phylogenetic methods, we find (1) Salamandrina sister to the clade of the "True Salamanders" (consisting of Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), (2) Ichthyosaura sister to the Near Eastern genera Neurergus and Ommatotriton, (3) Triturus sister to Lissotriton, and (4) Cynops paraphyletic with respect to Paramesotriton and Pachytriton. Combining introgression tests and phylogenetic networks, we find evidence for introgression among taxa within the clades of "Modern Asian Newts" and "Modern European Newts". However, we could not unambiguously identify the number, position, and direction of introgressive events. Combining evidence from nuclear gene analysis with the observed mito-nuclear phylogenetic discordances, we hypothesize a scenario with hybridization and mitochondrial capture among ancestral lineages of (1) Lissotriton into Ichthyosaura and (2) Triturus into Calotriton, plus introgression of nuclear genes from Triturus into Lissotriton. Furthermore, both mitochondrial capture and nuclear introgression may have occurred among lineages assigned to Cynops. More comprehensive genomic data will, in the future, allow testing this against alternative scenarios involving hybridization with other, extinct lineages of newts.


Asunto(s)
Hibridación Genética , Filogenia , Urodelos/clasificación , Urodelos/genética , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Genoma Mitocondrial , Mitocondrias/genética , Transcriptoma/genética
18.
Sci Rep ; 10(1): 7291, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32327720

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
J Anim Ecol ; 89(6): 1350-1364, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173904

RESUMEN

Identifying the drivers of population fluctuations in spatially distinct populations remains a significant challenge for ecologists. Whereas regional climatic factors may generate population synchrony (i.e. the Moran effect), local factors including the level of density dependence may reduce the level of synchrony. Although divergences in the scaling of population synchrony and spatial environmental variation have been observed, the regulatory factors that underlie such mismatches are poorly understood. Few previous studies have investigated how density-dependent processes and population-specific responses to weather variation influence spatial synchrony at both local and regional scales. We addressed this issue in a pond-breeding amphibian, the great crested newt Triturus cristatus. We used capture-recapture data collected through long-term surveys in five T. cristatus populations in Western Europe. In all populations-and subpopulations within metapopulations-population size, annual survival and recruitment fluctuated over time. Likewise, there was considerable variation in these demographic rates between populations and within metapopulations. These fluctuations and variations appear to be context-dependent and more related to site-specific characteristics than local or regional climatic drivers. We found a low level of demographic synchrony at both local and regional levels. Weather has weak and spatially variable effects on survival, recruitment and population growth rate. In contrast, density dependence was a common phenomenon (at least for population growth) in almost all populations and subpopulations. Our findings support the idea that the Moran effect is low in species where the population dynamics more closely depends on local factors (e.g. population density and habitat characteristics) than on large-scale environmental fluctuation (e.g. regional climatic variation). Such responses may have far-reaching consequences for the long-term viability of spatially structured populations and their ability to respond to large-scale climatic anomalies.


Asunto(s)
Anfibios , Crecimiento Demográfico , Animales , Europa (Continente) , Densidad de Población , Dinámica Poblacional
20.
Sci Rep ; 10(1): 1700, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015401

RESUMEN

Adaptation to different ecological environments can, through divergent selection, generate phenotypic and genetic differences between populations, and eventually give rise to new species. The fire salamander (Salamandra salamandra) has been proposed to represent an early stage of ecological speciation, driven by differential habitat adaptation through the deposition and development of larvae in streams versus ponds in the Kottenforst near Bonn (Germany). We set out to test this hypothesis of ecological speciation in an area different from the one where it was raised and we took the opportunity to explore for drivers of genetic differentiation at a landscape scale. A survey over 640 localities demonstrated the species' presence in ponds and streams across forests, hilly terrain and areas with hedgerows ('bocage'). Genetic variation at 14 microsatellite loci across 41 localities in and around two small deciduous forests showed that salamander effective population sizes were higher in forests than in the bocage, with panmixia in the forests (Fst < 0.010) versus genetic drift or founder effects in several of the small and more or less isolated bocage populations (Fst > 0.025). The system fits the 'mainland-island' metapopulation model rather than indicating adaptive genetic divergence in pond versus stream larval habitats. A reanalysis of the Kottenforst data indicated that microsatellite genetic variation fitted a geographical rather than an environmental axis, with a sharp transition from a western pond-breeding to an eastern, more frequently stream-breeding group of populations. A parallel changeover in mitochondrial DNA exists but remains to be well documented. The data support the existence of a hybrid zone following secondary contact of differentiated lineages, more so than speciation in situ.


Asunto(s)
ADN Mitocondrial/genética , Repeticiones de Microsatélite/genética , Urodelos/fisiología , Adaptación Fisiológica , Animales , Ecología , Ecosistema , Bosques , Flujo Genético , Especiación Genética , Variación Genética , Alemania , Islas , Larva , Densidad de Población , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...