Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 33(11): 6543-6558, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36734268

RESUMEN

The stability and flexibility of the functional parcellation of the cerebral cortex is fundamental to how familiar and novel information is both represented and stored. We leveraged new advances in Ca2+ sensors and microscopy to understand the dynamics of functional segmentation in the dorsal cerebral cortex. We performed wide-field Ca2+ imaging in head-fixed mice and used spatial independent component analysis (ICA) to identify independent spatial sources of Ca2+ fluorescence. The imaging data were evaluated over multiple timescales and discrete behaviors including resting, walking, and grooming. When evaluated over the entire dataset, a set of template independent components (ICs) were identified that were common across behaviors. Template ICs were present across a range of timescales, from days to 30 seconds, although with lower occurrence probability at shorter timescales, highlighting the stability of the functional segmentation. Importantly, unique ICs emerged at the shorter duration timescales that could act to transiently refine the cortical network. When data were evaluated by behavior, both common and behavior-specific ICs emerged. Each behavior is composed of unique combinations of common and behavior-specific ICs. These observations suggest that cerebral cortical functional segmentation exhibits considerable spatial stability over time and behaviors while retaining the flexibility for task-dependent reorganization.


Asunto(s)
Calcio , Neocórtex , Ratones , Animales , Neocórtex/diagnóstico por imagen , Factores de Tiempo , Imagen por Resonancia Magnética/métodos
2.
Neurobiol Dis ; 176: 105943, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476979

RESUMEN

>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.


Asunto(s)
Conmoción Encefálica , Ratones , Animales , Conmoción Encefálica/diagnóstico por imagen , Calcio , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
3.
Cereb Cortex ; 32(12): 2668-2687, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34689209

RESUMEN

Motor behavior results in complex exchanges of motor and sensory information across cortical regions. Therefore, fully understanding the cerebral cortex's role in motor behavior requires a mesoscopic-level description of the cortical regions engaged, their functional interactions, and how these functional interactions change with behavioral state. Mesoscopic Ca2+ imaging through transparent polymer skulls in mice reveals elevated activation of the dorsal cerebral cortex during locomotion. Using the correlations between the time series of Ca2+ fluorescence from 28 regions (nodes) obtained using spatial independent component analysis (sICA), we examined the changes in functional connectivity of the cortex from rest to locomotion with a goal of understanding the changes to the cortical functional state that facilitate locomotion. Both the transitions from rest to locomotion and from locomotion to rest show marked increases in correlation among most nodes. However, once a steady state of continued locomotion is reached, many nodes, including primary motor and somatosensory nodes, show decreases in correlations, while retrosplenial and the most anterior nodes of the secondary motor cortex show increases. These results highlight the changes in functional connectivity in the cerebral cortex, representing a series of changes in the cortical state from rest to locomotion and on return to rest.


Asunto(s)
Calcio , Corteza Motora , Animales , Mapeo Encefálico , Diagnóstico por Imagen , Locomoción , Imagen por Resonancia Magnética , Ratones , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología
4.
J Neurosci Methods ; 354: 109100, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33600850

RESUMEN

Deciphering neurologic function is a daunting task, requiring understanding the neuronal networks and emergent properties that arise from the interactions among single neurons. Mechanistic insights into neuronal networks require tools that simultaneously assess both single neuron activity and the consequent mesoscale output. The development of cranial window technologies, in which the skull is thinned or replaced with a synthetic optical interface, has enabled monitoring neuronal activity from subcellular to mesoscale resolution in awake, behaving animals when coupled with advanced microscopy techniques. Here we review recent achievements in cranial window technologies, appraise the relative merits of each design and discuss the future research in cranial window design.


Asunto(s)
Encéfalo , Cráneo , Animales , Microscopía , Neuronas , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...