Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indoor Air ; 32(3): e13012, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35347787

RESUMEN

In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated through an integrated approach combining a recently developed predictive emission-to-risk approach and a validated CFD numerical model numerically solved using the open-source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero-dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment.


Asunto(s)
COVID-19 , Automóviles , COVID-19/etiología , Simulación por Computador , Humanos , Hidrodinámica , SARS-CoV-2
2.
Waste Manag ; 38: 157-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25670165

RESUMEN

A numerical investigation on the parameters influencing the ultrafine particle concentrations downwind an incinerator plant has been carried out on a three-dimensional full scale model. The simulation was based on a modified version of the k-ε turbulence model in order to take into account the thermal buoyancy effect of the plume, and reproducing a stable and neutral atmospheric boundary layer by setting appropriate values of velocity, turbulent kinetic energy and turbulent dissipation rate. The ability of the model to reproduce and maintain a stable atmospheric boundary layer was evaluated by analyzing the turbulent characteristics of the flow along the domain. A parametric analysis made on the basis of different plant operational, environmental, and flue gas treatment parameters was carried out in order to evaluate the impact of incinerator plants on the background concentration of ultrafine particles. The evaluation was made at 5 km downwind the chimney in a breathable area, showing that the most significant impact is due to the flue gas treatment section, with a variation on the background concentration up to 370% for a plant hypothetically working without controls on ultrafine particles emission. Operational and environmental parameters determine variations of the concentrations ranging from 1.62% to 4.48% for the lowest and highest chimney, from 1.41% to 4.52% for the lowest and highest wind speed and from 2.48% to 4.5% for the lowest and highest flue gas velocity, respectively. In addition, plume rise evaluation was carried out as a function of wind speed and flue gas velocity from the chimney.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Incineración , Material Particulado/análisis , Movimientos del Aire , Modelos Teóricos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...