Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(24): eabm6049, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35714180

RESUMEN

Vesicle fusion at preestablished plasma membrane release sites releases transmitters and hormones to mediate fundamental functions like neuronal network activities and fight-or-flight responses. This half-a-century-old concept-fusion at well-established release sites in excitable cells-needs to be modified to include the sequential compound fusion reported here-vesicle fusion at previously fused Ω-shaped vesicular membrane. With superresolution STED microscopy in excitable neuroendocrine chromaffin cells, we real-time visualized sequential compound fusion pore openings and content releases in generating multivesicular and asynchronous release from single release sites, which enhances exocytosis strength and dynamic ranges in excitable cells. We also visualized subsequent compound fusion pore closure, a new mode of endocytosis termed compound kiss-and-run that enhances vesicle recycling capacity. These results suggest modifying current exo-endocytosis concepts by including rapid release-site assembly at fused vesicle membrane, where sequential compound fusion and kiss-and-run take place to enhance exo-endocytosis capacity and dynamic ranges.

2.
STAR Protoc ; 3(2): 101404, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35600934

RESUMEN

Real-time confocal and super-resolution imaging reveals membrane dynamics of exo- and endocytosis, including hemi-fusion, fusion pore opening, expansion, constriction, closure (kiss-and-run), fused-vesicle shrinking (shrink fusion), and flat membrane transition to vesicles via intermediate Λ- and Ω-shape structures. Here, we describe a protocol for imaging these membrane dynamics, including primary culture of bovine adrenal chromaffin cells, fluorescent probe application, patch-clamp to deliver depolarization and evoke exo- and endocytosis, electron microscopy (EM), and real-time confocal and stimulated emission depletion (STED) microscopy. For complete details on the use and execution of this protocol, please refer to Zhao et al. (2016), Shin et al. (2018), and Shin et al. (2021).


Asunto(s)
Células Cromafines , Fusión de Membrana , Animales , Bovinos , Endocitosis , Microscopía/métodos , Vesículas Secretoras
3.
iScience ; 25(2): 103809, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198874

RESUMEN

Clathrin-mediated endocytosis, the most prominent endocytic mode, is thought to be generated primarily from relatively flat patches of the plasma membrane. By employing conventional and platinum replica electron microscopy and super-resolution STED microscopy in neuroendocrine chromaffin cells, we found that large Ω-shaped or dome-shaped plasma membrane invaginations, previously thought of as the precursor of bulk endocytosis, are primary sites for clathrin-coated pit generation after depolarization. Clathrin-coated pits are more densely packed at invaginations rather than flat membranes, suggesting that invaginations are preferred sites for clathrin-coated pit formation, likely because their positive curvature facilitates coated-pit formation. Thus, clathrin-mediated endocytosis closely collaborates with bulk endocytosis to enhance endocytic capacity in active secretory cells. This direct collaboration between two classically independent endocytic pathways is of broad importance given the central role of both clathrin-mediated endocytosis and bulk endocytosis in neurons, endocrine cells, immune cells, and many other cell types throughout the body.

4.
Neuron ; 109(19): 3119-3134.e5, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34411513

RESUMEN

Transformation of flat membrane into round vesicles is generally thought to underlie endocytosis and produce speed-, amount-, and vesicle-size-specific endocytic modes. Visualizing depolarization-induced exocytic and endocytic membrane transformation in live neuroendocrine chromaffin cells, we found that flat membrane is transformed into Λ-shaped, Ω-shaped, and O-shaped vesicles via invagination, Λ-base constriction, and Ω-pore constriction, respectively. Surprisingly, endocytic vesicle formation is predominantly from not flat-membrane-to-round-vesicle transformation but calcium-triggered and dynamin-mediated closure of (1) Ω profiles formed before depolarization and (2) fusion pores (called kiss-and-run). Varying calcium influxes control the speed, number, and vesicle size of these pore closures, resulting in speed-specific slow (more than ∼6 s), fast (less than ∼6 s), or ultrafast (<0.6 s) endocytosis, amount-specific compensatory endocytosis (endocytosis = exocytosis) or overshoot endocytosis (endocytosis > exocytosis), and size-specific bulk endocytosis. These findings reveal major membrane transformation mechanisms underlying endocytosis, diverse endocytic modes, and exocytosis-endocytosis coupling, calling for correction of the half-a-century concept that the flat-to-round transformation predominantly mediates endocytosis after physiological stimulation.


Asunto(s)
Células Cromafines/fisiología , Células Cromafines/ultraestructura , Endocitosis/fisiología , Células Neuroendocrinas/fisiología , Células Neuroendocrinas/ultraestructura , Animales , Señalización del Calcio , Bovinos , Fusión Celular , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Sistemas de Computación , Dinaminas/fisiología , Exocitosis/fisiología , Fusión de Membrana , Cultivo Primario de Células , Vesículas Sinápticas/metabolismo
5.
Cell Rep ; 30(2): 421-431.e7, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31940486

RESUMEN

For decades, two fusion modes were thought to control hormone and transmitter release essential to life; one facilitates release via fusion pore dilation and flattening (full collapse), and the other limits release by closing a narrow fusion pore (kiss-and-run). Using super-resolution stimulated emission depletion (STED) microscopy to visualize fusion modes of dense-core vesicles in neuroendocrine cells, we find that facilitation of release is mediated not by full collapse but by shrink fusion, in which the Ω-profile generated by vesicle fusion shrinks but maintains a large non-dilating pore. We discover that the physiological osmotic pressure of a cell squeezes, but does not dilate, the Ω-profile, which explains why shrink fusion prevails over full collapse. Instead of kiss-and-run, enlarge fusion, in which Ω-profiles grow while maintaining a narrow pore, slows down release. Shrink and enlarge fusion may thus account for diverse hormone and transmitter release kinetics observed in secretory cells, previously interpreted within the full-collapse/kiss-and-run framework.


Asunto(s)
Transporte Biológico/fisiología , Endocitosis/fisiología , Exocitosis/fisiología , Vesículas Secretoras/fisiología , Comunicación Celular/fisiología , Humanos
6.
Cell ; 173(4): 934-945.e12, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29606354

RESUMEN

Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis/fisiología , Fusión de Membrana/fisiología , Actinas/metabolismo , Animales , Calcio/metabolismo , Bovinos , Membrana Celular/química , Células Cromafines/citología , Células Cromafines/metabolismo , Dinaminas/metabolismo , Estimulación Eléctrica , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Masculino , Microscopía Confocal , Modelos Biológicos , Técnicas de Placa-Clamp , Vesículas Secretoras/fisiología
7.
Nat Commun ; 7: 12604, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27576662

RESUMEN

Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30-300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Fusión de Membrana , Modelos Biológicos , Animales , Bovinos , Células Cromafines , Endocitosis , Exocitosis , Femenino , Técnicas de Inactivación de Genes , Procesamiento de Imagen Asistido por Computador , Lampreas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía/métodos , Imagen Molecular/métodos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Cultivo Primario de Células , Vesículas Secretoras/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...