Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1310: 342672, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811131

RESUMEN

BACKGROUND: This study tackles the critical challenges in metal analysis by presenting an innovative miniaturized metal extraction device prototype. This device features a functional nanocomposite (FNC) enhanced 3D-printed polylactic acid (PLA) metal extractant (FNC@3D PLA). The research is motivated by the constraints of traditional solid-phase extraction (SPE) methods, specifically their limitations in handling competitive metal ion environments and matrix interference during inductively coupled plasma mass spectrometry (ICP-MS) analysis. The designed prototype aims to overcome these challenges and enhance the extraction efficiency of diverse metals. RESULTS: The FNC, designed to incorporate various functional groups critical for metal ion extraction efficiency, was meticulously engineered through the reaction of acid-treated and delaminated graphitic carbon nitride nanosheets (Thiol-gCN NSs) with 3-mercaptopropyl trimethoxysilane (MPTMS). The competitive metal ion extraction efficiency of FNC@3D PLA was demonstrated, showcasing notable limit of detection values of 3.2 ± 0.7 ng mL-1 and 8.57 ± 3.05 ng mL-1 for Cu and Ag, respectively. Furthermore, the miniaturized 3D-printed metal-preconcentration setup incorporating FNC@3D PLA exhibited favorable intraday relative standard deviation (RSD) percentage (%) values ranging from 1.23 to 8.6 for both Cu and Ag. Interday RSD % between 1.41 and 8.14 were observed under spiked real urine sample conditions. The sustainability and robustness of the proposed approach were underscored by substantial recovery % values exhibited by FNC@3D PLA, even after eight consecutive regeneration processes. SIGNIFICANCE: This study significantly contributes to the advancement of analytical methodologies by providing a reliable and efficient platform for metal extraction and preconcentration in practical metal analysis applications. Developed FNC@3D PLA system demonstrates its potential to address the challenges associated with SPE in metal analysis, especially in complex sample matrices. We believe implications of this research can be extended to various fields, from environmental monitoring to clinical diagnostics, where accurate and reliable metal analysis is paramount.

2.
Anal Methods ; 16(8): 1261-1271, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323472

RESUMEN

A fluorescence probe based on iron oxide quantum dots (IO-QDs) was synthesized using the hydrothermal method for the determination of tetracycline (TCy) and ciprofloxacin (CPx) in aqueous solution. The IO-QDs were characterized using high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (P-XRD), vibrating sample magnetometry (VSM), and Fourier-transform infrared spectroscopy (FTIR). The as-prepared IO-QDs are fluorescent, stable, and with a fluorescence quantum yield (QY) of 9.8 ± 0.12%. The fluorescence of IO-QDs was observed to be quenched and enhanced in the presence of TCy and CPx, respectively. The fluorescence intensity ratio shows linearity at concentrations from 1-100 µM and 5-100 µM for TCy and CPx, respectively; the detection limit for TCy and CPx was estimated to be 0.71 µM and 1.56 µM, respectively. The proposed method was also successfully utilized in the spiked samples of drinking water and honey with good recoveries. The method offered convenience, rapid detection, high sensitivity, selectivity, and cost-efficient alternative options for the determination of TCy and CPx in real samples.


Asunto(s)
Antibacterianos , Compuestos Férricos , Puntos Cuánticos , Ciprofloxacina , Puntos Cuánticos/química , Tetraciclina
3.
Anal Methods ; 15(47): 6531-6540, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37990560

RESUMEN

We established an innovative and easy-to-use methodology for selenium (Se) extraction and determination from real water samples utilizing a magnetic nanocomposite adsorbent (MNC-SPE) aided by an inductively coupled plasma mass spectrometry (ICP-MS) approach. The MNC-SPE adsorbent was fabricated by hybridizing Fe3O4 nanoparticles on the surface of carbon nitride nanosheets (GCN NSs) that were coated with 1-hexyl-3-methylimidazolium hexafluorophosphate ionic liquid (P-IL). A variety of techniques were used to thoroughly analyze the structural and chemical characteristics of MNC-SPE, and appear to have a great number of diverse active surface functional units (imidazole ring and -NH3+). In order to optimize the key factors affecting the Se extraction, parameters including the adsorbent dosage, contact time, eluent type, eluent volume, eluent time, and reusability of adsorbent were extensively studied. The proposed approach was validated under the optimal reaction conditions, and it showed good linearity between 0.15 and 100 pg µL-1 with a significant R2 value (R2 = 0.9994) toward Se metal. Besides, the Se limit of detection (LOD) and limit of quantification (LOQ) are 0.063 pg µL-1 and 0.147 pg µL-1, respectively. Further, by utilizing tap and river water samples, the applicability of the validated method was tested; the approach showed high Se recovery values in the range of 87.6-115.5% for the spiked real-world samples and the interday and intraday precision (RSD%) values of the approach were 4.8% (n = 6). The MNC-SPE can be regenerated and reused for four consecutive extraction-desorption cycles by employing 0.5 M NaOH eluent.

4.
Anal Chim Acta ; 1231: 340418, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36220291

RESUMEN

This study reports a facile approach for the fabrication of chitosan (CS, biopolymer)- and l-histidine (L-His, biomolecule)-stabilized self-assembled silicon nanoparticles (SiNPs) for sensing Cu2+ ions. Approached method yielded 3.8 ± 0.04 nm size CS/L-His-SiNPs particles, with high stability against harsh pH and temperature conditions. Besides, CS/L-His-SiNPs highly selective to Copper amongst different metal ions tested (Fe3+, Mg2+, Al3+, Cr3+, Cr6+, Cu2+, Mn2+, Cd2+, Pb2+, Zn2+, Hg2+, Ca2+, Li2+, Po42-, As3+, As5+). As compared to the blank-SiNPs (LOD = 96.49 ± 0.223 µM) and CS-SiNPs (LOD = 33.35 ± 1.004 µM); L-His ligand, enhanced the sensitivity of the CS/L-His-SiNPs toward Cu2+ with remarkable LOD value of 55.02 ± 0.42 nM. Applicability of CS/L-His-SiNPs was evaluated by coating CS/L-His-SiNPs on thin layer chromatography (TLC) sheets, CS/L-His-SiNPs-TLC sheets exhibited significant sensing capacity toward Cu2+ ions, with a detection range of 4.0-900 µM, making them suitable for on-site analysis of Cu2+ ions from both environmental and clinical samples. Finally, Cu2+ sensing practicality of CS/L-His-SiNPs-TLC sheets were challenged against real human urine samples. Expressively, CS/L-His-SiNPs-TLC sheets could be regenerated using ethylenediaminetetraacetic acid (EDTA), without losing their photostability, and can be reused further.


Asunto(s)
Quitosano , Mercurio , Nanopartículas , Cadmio , Cromatografía en Capa Delgada , Cobre/química , Ácido Edético/química , Histidina , Humanos , Iones , Plomo , Ligandos , Nanopartículas/química , Silicio
5.
Bioresour Technol ; 351: 127018, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35307519

RESUMEN

Current study aims to synthesize chitosan/polyvinyl alcohol (CS/PVA), poly(ethyleneimine), and Fe3O4 impregnated beads for co-removal of Cr(VI) and toxic azo-dyes from wastewater. The mesoporous PEI@AC@Fe3O4 exhibits magnetism and enhanced physisorption by higher specific-porosity (2.1 nm) from Cr(VI) radii (0.044 nm). Moreover, surface functional groups (-OH, -NH, -NH2, -COOH etc.), especially amines enhance ionic bonding due to positive zeta potential. Hence, it is unique for anionic dyes removal under a wide pH range. It showed maximum adsorption capacity 98, 85.5, 85.8, and 91%, or 199.8, 148, 167, 176.5 mg g-1 respectively for Cr(VI), tartrazine, sunset yellow, and erythrosine. Surface adsorption of Cr(VI) and its transition into Cr(III) was confirmed by EDX. Langmuir isotherm and pseudo-first-order kinetics best fit the adsorption of Cr(VI) and azo-dyes confirming their monolayer physisorption on adsorbent surface. Synthesized adsorbent examined in wastewater purification prototype for efficient removal of different simulated wastewaters confirms its potential for real-world applications.


Asunto(s)
Quitosano , Colorantes de Alimentos , Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cromo/análisis , Colorantes , Concentración de Iones de Hidrógeno , Cinética , Aguas Residuales , Contaminantes Químicos del Agua/análisis
6.
Langmuir ; 37(23): 7147-7155, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34081475

RESUMEN

We disclose a straightforward approach to fabricate nanocomposites for efficient capture of Cr(VI) from an aqueous solution through the self-assembly of poly(ethyleneimine)-modified graphitic carbon nitride nanosheets (PEI-g-C3N4 NSs) and lysozyme fibrils (LFs). The as-made PEI-g-C3N4 NSs@LFs exhibited mesoporous structures with a high specific surface area of 39.6 m2 g-1, a large pore volume of 0.25 cm3 g-1, several functional groups (e.g., -N, -NH, -NH2, and -COOH), and a zero-point charge at pH 9.1. These merits allow the PEI-g-C3N4 NSs@LFs to further enhance their physical adsorption and electrostatic attraction with the negatively charged Cr(VI) species of HCrO4- and CrO42-, which is beneficial for the uptake of Cr(VI), >80%, from an aqueous solution in a wide pH range. Interestingly, X-ray photoelectron spectra indicate that the PEI-g-C3N4 NSs@LFs converted Cr(VI) to Cr(III) through visible-light-induced photoreduction. The adsorption of Cr(VI) on the surface of PEI-g-C3N4 NSs@LFs was found to obey the Freundlich isotherm model, signifying that they have a heterogeneous surface for the multilayer uptake of Cr(VI). In contrast, the PEI-g-C3N4 NSs and LFs as Cr(VI) adsorbents followed the Langmuir isotherm model. Adsorption kinetic studies showed that the uptake of Cr(VI) through the PEI-g-C3N4 NSs@LFs was highly correlated with a pseudo-first-order model, suggesting that physisorption dominates the interaction of Cr(VI) and the PEI-g-C3N4 NSs@LFs. In real-life applications, the PEI-g-C3N4 NSs@LFs were used for the detoxification of the total chromium in the industrial effluent and sludge samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...