Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38415072

RESUMEN

Stenotrophomonas is a bacterial genus that can be found in various environments, such as water, soil, and clinical samples. Due to their high genetic and phenotypic diversity, it is difficult to properly identify and classify all isolates. The COVID-19 pandemic caused an increase in nosocomial infections, which played a major role in the high mortality rate among patients in intensive care. This is the first report of the identification of S. geniculata as a nosocomial opportunistic pathogen isolated from a patient with COVID-19. Their genome was isolated, sequenced, and assembled, and it consists of 4,488,090 bp in 24 contigs, 4,103 coding sequences, and a G+C content of 66.58%.

2.
Folia Microbiol (Praha) ; 65(5): 849-861, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32372279

RESUMEN

Fungi can improve stover digestibility due to their ability to secrete oxidative enzymes that depolymerize lignin, allowing the rumen microorganisms to access the polysaccharides of the plant cell wall. Some ascomycetes have shown good delignification capability; however, they have been scarcely evaluated for their ability to improve corn stover (CS) ruminal digestibility. We evaluated the laccase induction by CS of the CMU-196 strain of the ascomycete fungus Didymosphaeria sp. (syn. = Paraconiothyrium sp.). Also, we analyzed the capacity of such strain to modify the cell wall of CS and to improve its digestion by the ruminal microbiota. The CMU-196 strain showed a maximum extracellular laccase activity of 39.74 ± 0.24 U/L when an aqueous stover extract (SE, 10% v/v) was added to the growth medium. The addition of ground stover (GS, 2% w/v) increased the activity to a maximum of 262.27 ± 0.58 U/L. In solid-state fermentation (SSF) assays of GS, the strain degrades cell walls, destabilizing the vessels and tracheids of plant biomass; the protein content reaches a maximum of 33.2 g/kg dry matter (DM) at 70 days, while the crude fiber content shows the highest level of 314 g/kg DM at 14 days. SSF treatment of the CS increased the in vitro ruminal production of gas in a fraction that was considered nondigestible at 18 h, and gas production increased by 14% with respect to the untreated GS at 14 days. The CMU-196 strain can digest the plant cell wall and improve ruminal CS digestibility at a level equivalent to several basidiomycete species.


Asunto(s)
Ascomicetos/metabolismo , Lacasa/metabolismo , Zea mays/metabolismo , Alimentación Animal/análisis , Alimentación Animal/microbiología , Animales , Ascomicetos/enzimología , Ascomicetos/crecimiento & desarrollo , Biomasa , Pared Celular/metabolismo , Pared Celular/ultraestructura , Fermentación , Lignina/metabolismo , Rumen/microbiología , Zea mays/ultraestructura
3.
Biotechnol Prog ; 34(4): 846-857, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29708651

RESUMEN

The isolation and characterization of fungal strains from poorly described taxa allows undercover attributes of their basic biology useful for biotechnology. Here, a wild fungal strain (CMU-196) from recently described Paraconiothyrium genus was analyzed. CMU-196 was identified as Paraconiothyrium brasiliense by phylogenetic analysis of the rDNA internal transcribed spacer region (ITS). CMU-196 metabolized 57 out of 95 substrates of the Biolog FF microplates. Efficient assimilation of dextrins and glycogen indicates that CMU-196 is a good producer of amylolytic enzymes. It showed a remarkably assimilation of α-d-lactose, substrate described as inducer of cellulolytic activity but poorly assimilated by several fungi. Metabolically active mycelium of the strain decolorized broth supplemented with direct blue 71, Chicago sky blue and remazol brilliant blue R dyes. The former two dyes were also well removed from broth by mycelium inactivated by autoclaving. Both mycelia had low efficiency for removing fuchsin acid from broth and for decolorizing wastewater from the paper industry. CMU-196 strain showed extracellular laccase activity when potato dextrose broth was supplemented with Cu+2 , reaching a maximum activity of 46.8 (±0.33) U L-1 . Studied strain antagonized phytopathogenic Colletotrichum spp. fungi and Phytophthora spp. oomycetes in vitro, but is less effective towards Fusarium spp. fungi. CMU-196 antagonism includes overgrowing the mycelia of phytopathogens and growth inhibition, probably by hydrosoluble extracellular metabolites. The biotechnological potential of strain CMU-196 here described warrants further studies to have a more detailed knowledge of the mechanisms associated with its metabolic versatility, capacity for environmental detoxification, extracellular laccase production, and antagonism against phytopathogens. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:846-857, 2018.


Asunto(s)
Ascomicetos/metabolismo , Biotecnología/métodos , ADN Ribosómico/metabolismo , Lacasa/metabolismo , Micelio/metabolismo
4.
3 Biotech ; 7(5): 319, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28955616

RESUMEN

Fungal strains identified by phylogenetic analysis of the ITS rDNA region as Trametes versicolor (CMU-TA01), Irpex lacteus (CMU-84/13), and Phlebiopsis sp. (CMU-47/13) are able to grow on and bleach kraft pulp (KP) in a simple solid-state fermentation (SSF) assay conducted in Petri dishes. Kappa number reductions obtained with Phlebiopsis sp. (48.3%), T. versicolor (43%), and I. lacteus (39.3%), evidence their capability for lignin breakdown. Scanning electron microscopy images of KP fibers from SSF assays demonstrated increased roughness and striation, evidencing significant cell wall modification. T. versicolor produces laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) in potato dextrose broth (PDB), PDB + CuSO4, and PDB + KP, whereas Phlebiopsis sp. and I. lacteus showed no Lac and low LiP activities in all media. Compared to PDB, the highest increase in Lac (7.25-fold) and MnP (2.37-fold) activities in PDB + CuSO4 occur in T. versicolor; for LiP, the greatest changes (6.95-fold) were observed in I. lacteus. Incubation in PDB + KP shows significant increases in Lac and MnP for T. versicolor, MnP and LiP for Phlebiopsis sp., and none for I. lacteus. SSF assays in Petri plates are a valuable tool to select fungi that are able to delignify KP. Here, delignification by Phlebiopsis sp. of this substrate is reported for the first time, and MnP activity was strongly associated with the delignification ability of the studied strains. The obtained results suggest that the studied fungal strains have biotechnological potential for use in the paper industry.

5.
Biotechnol Prog ; 32(3): 787-98, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26821938

RESUMEN

Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU-1 (T. harzianum), CMU-8 (T. atroviride), CMU-218 (T. viride), and CMU-221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU-8 showed no basal laccase activity, while strains CMU-1, CMU-218, and CMU-221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU-1 by 34%, relative to the basal culture, while strains CMU-8, CMU-21, and CMU-221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787-798, 2016.


Asunto(s)
Lacasa/metabolismo , Trichoderma/metabolismo , ADN de Hongos/genética , Trichoderma/citología , Trichoderma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...