Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190473, 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33161857

RESUMEN

The international planetary science community met in London in January 2020, united in the goal of realizing the first dedicated robotic mission to the distant ice giants, Uranus and Neptune, as the only major class of solar system planet yet to be comprehensively explored. Ice-giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests to our understanding of exotic water-rich planetary interiors, dynamic and frigid atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue on ice giant system exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

2.
J Geophys Res Space Phys ; 121(1): 338-357, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-27610291

RESUMEN

Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ≃ 2200 h Saturn local time at 36 RS from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 109 and (1.43 ± 0.21) × 1010 cm-2 s-1, 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×102 and 1.1 ×103 kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found during this event. It is not clear how much of this mass is trapped within the magnetosphere and how much is lost to the solar wind.

3.
J Geophys Res Space Phys ; 120(5): 3603-3617, 2015 05.
Artículo en Inglés | MEDLINE | ID: mdl-27570722

RESUMEN

We present a case study of an event from 20 August (day 232) of 2006, when the Cassini spacecraft was sampling the region near 32 RS and 22 h LT in Saturn's magnetotail. Cassini observed a strong northward-to-southward turning of the magnetic field, which is interpreted as the signature of dipolarization of the field as seen by the spacecraft planetward of the reconnection X line. This event was accompanied by very rapid (up to ~1500 km s-1) thermal plasma flow toward the planet. At energies above 28 keV, energetic hydrogen and oxygen ion flow bursts were observed to stream planetward from a reconnection site downtail of the spacecraft. Meanwhile, a strong field-aligned beam of energetic hydrogen was also observed to stream tailward, likely from an ionospheric source. Saturn kilometric radiation emissions were stimulated shortly after the observation of the dipolarization. We discuss the field, plasma, energetic particle, and radio observations in the context of the impact this reconnection event had on global magnetospheric dynamics.

4.
Geophys Res Lett ; 42(17): 6890-6898, 2015 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27609998

RESUMEN

For over 10 years, the Cassini spacecraft has patrolled Saturn's magnetosphere and observed its magnetopause boundary over a wide range of prevailing solar wind and interior plasma conditions. We now have data that enable us to resolve a significant dawn-dusk asymmetry and find that the magnetosphere extends farther from the planet on the dawnside of the planet by 7 ± 1%. In addition, an opposing dawn-dusk asymmetry in the suprathermal plasma pressure adjacent to the magnetopause has been observed. This probably acts to reduce the size asymmetry and may explain the discrepancy between the degree of asymmetry found here and a similar asymmetry found by Kivelson and Jia (2014) using MHD simulations. Finally, these observations sample a wide range of season, allowing the "intrinsic" polar flattening (14 ± 1%) caused by the magnetodisc to be separated from the seasonally induced north-south asymmetry in the magnetopause shape found theoretically (5 ± 1% when the planet's magnetic dipole is tilted away from the Sun by 10-17°).

5.
J Geophys Res Space Phys ; 120(9): 7289-7306, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-27867793

RESUMEN

Saturn's magnetic field acts as an obstacle to solar wind flow, deflecting plasma around the planet and forming a cavity known as the magnetosphere. The magnetopause defines the boundary between the planetary and solar dominated regimes, and so is strongly influenced by the variable nature of pressure sources both outside and within. Following from Pilkington et al. (2014), crossings of the magnetopause are identified using 7 years of magnetic field and particle data from the Cassini spacecraft and providing unprecedented spatial coverage of the magnetopause boundary. These observations reveal a dynamical interaction where, in addition to the external influence of the solar wind dynamic pressure, internal drivers, and hot plasma dynamics in particular can take almost complete control of the system's dayside shape and size, essentially defying the solar wind conditions. The magnetopause can move by up to 10-15 planetary radii at constant solar wind dynamic pressure, corresponding to relatively "plasma-loaded" or "plasma-depleted" states, defined in terms of the internal suprathermal plasma pressure.

6.
Geophys Res Lett ; 41(5): 1382-1388, 2014 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25821276

RESUMEN

We report on the first analysis of magnetospheric cusp observations at Saturn by multiple in situ instruments onboard the Cassini spacecraft. Using this we infer the process of reconnection was occurring at Saturn's magnetopause. This agrees with remote observations that showed the associated auroral signatures of reconnection. Cassini crossed the northern cusp around noon local time along a poleward trajectory. The spacecraft observed ion energy-latitude dispersions-a characteristic signature of the terrestrial cusp. This ion dispersion is "stepped," which shows that the reconnection is pulsed. The ion energy-pitch angle dispersions suggest that the field-aligned distance from the cusp to the reconnection site varies between ∼27 and 51 RS . An intensification of lower frequencies of the Saturn kilometric radiation emissions suggests the prior arrival of a solar wind shock front, compressing the magnetosphere and providing more favorable conditions for magnetopause reconnection. KEY POINTS: We observe evidence for reconnection in the cusp plasma at SaturnWe present evidence that the reconnection process can be pulsed at SaturnSaturn's cusp shows similar characteristics to the terrestrial cusp.

7.
Science ; 307(5713): 1266-70, 2005 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15731444

RESUMEN

Cassini's successful orbit insertion has provided the first examination of Saturn's magnetosphere in 23 years, revealing a dynamic plasma and magnetic environment on short and long time scales. There has been no noticeable change in the internal magnetic field, either in its strength or its near-alignment with the rotation axis. However, the external magnetic field is different compared with past spacecraft observations. The current sheet within the magnetosphere is thinner and more extended, and we observed small diamagnetic cavities and ion cyclotron waves of types that were not reported before.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...