Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408817

RESUMEN

Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aß levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.


Asunto(s)
Farmacovigilancia , Células Piramidales , Animales , Hipocampo/fisiología , Interneuronas , Ratones , Ratones Noqueados , Células Piramidales/fisiología , Transmisión Sináptica/fisiología
2.
Data Brief ; 36: 107027, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33948455

RESUMEN

This article provides raw relative electroencephalographic (EEG) power, temperature and activity data from controls and Cav3.2 deficient mice. Radiotransmitter implantation was carried out in male experimental mice under ketamine/xylazine narcosis. Following a recovery period, radiotelemetric EEG recordings from the hippocampal CA1 region were obtained under spontaneous 24 h long-term conditions and post urethane injection. Relative EEG power values (%) for 2 s epochs were analysed for the following frequency ranges: delta 1 ( δ 1 , 0.5-4 Hz), delta 2 ( δ 2 , 1-4 Hz), theta 1 ( θ 1 , 4-8 Hz), theta 2 ( θ 2 , 4-12 Hz), alpha ( α , 8-12 Hz), sigma ( σ , 12-16 Hz), beta 1 ( ß 1 , 12-30 Hz), beta 2 ( ß 2 , 16-24 Hz), beta 3 ( ß 3 , 16-30 Hz), gamma low ( γ l o w , 30-50 Hz), gamma mid ( γ m i d , 50-70 Hz), gamma high ( γ h i g h , 70-100 Hz), gamma ripples ( γ r i p p l e s , 80-200 Hz), and gamma fast ripples ( γ f a s t r i p p l e s , 200-500 Hz). In addition, subcutaneous temperature and relative activity data were analysed for both the light and dark cycle of two long-term recordings. The same type of data was obtained post urethane injection. Detailed information is provided for the age and body weight of the experimental animals, the technical specifications of the radiofrequency transmitter, the stereotaxic coordinates for the intracerebral, deep and epidural, surface EEG electrodes, the electrode features, the filtering and sampling characteristics, the analysed EEG frequency bands and the data acquisition parameters. EEG power data, temperature and activity data are available at MENDELEY DATA (doi:10.17632/x53km5sby6.1, URL: http://dx.doi.org/10.17632/x53km5sby6.1). Raw EEG data are available at zenodo (https://zenodo.org/).

3.
Neural Plast ; 2021: 8823383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33519929

RESUMEN

Recent pharmacoepidemiologic studies suggest that pharmacological neuroenhancement (pNE) and mood enhancement are globally expanding phenomena with distinctly different regional characteristics. Sociocultural and regulatory aspects, as well as health policies, play a central role in addition to medical care and prescription practices. The users mainly display self-involved motivations related to cognitive enhancement, emotional stability, and adaptivity. Natural stimulants, as well as drugs, represent substance abuse groups. The latter comprise purines, methylxanthines, phenylethylamines, modafinil, nootropics, antidepressants but also benzodiazepines, ß-adrenoceptor antagonists, and cannabis. Predominant pharmacodynamic target structures of these substances are the noradrenergic/dopaminergic and cholinergic receptor/transporter systems. Further targets comprise adenosine, serotonin, and glutamate receptors. Meta-analyses of randomized-controlled studies in healthy individuals show no or very limited verifiability of positive effects of pNE on attention, vigilance, learning, and memory. Only some members of the substance abuse groups, i.e., phenylethylamines and modafinil, display positive effects on attention and vigilance that are comparable to caffeinated drinks. However, the development of new antidementia drugs will increase the availability and the potential abuse of pNE. Social education, restrictive regulatory measures, and consistent medical prescription practices are essential to restrict the phenomenon of neuroenhancement with its social, medical, and ethical implications. This review provides a comprehensive overview of the highly dynamic field of pharmacological neuroenhancement and elaborates the dramatic challenges for the medical, sociocultural, and ethical fundaments of society.


Asunto(s)
Afecto/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Desarrollo de Medicamentos/tendencias , Motivación/efectos de los fármacos , Nootrópicos/farmacología , Farmacoepidemiología/tendencias , Afecto/fisiología , Estimulantes del Sistema Nervioso Central/síntesis química , Estimulantes del Sistema Nervioso Central/clasificación , Desarrollo de Medicamentos/métodos , Ética , Predicción , Humanos , Motivación/fisiología , Nootrópicos/síntesis química , Nootrópicos/clasificación , Farmacoepidemiología/métodos
4.
Sci Rep ; 11(1): 1099, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441788

RESUMEN

T-type Ca2+ channels are assumed to contribute to hippocampal theta oscillations. We used implantable video-EEG radiotelemetry and qPCR to unravel the role of Cav3.2 Ca2+ channels in hippocampal theta genesis. Frequency analysis of spontaneous long-term recordings in controls and Cav3.2-/- mice revealed robust increase in relative power in the theta (4-8 Hz) and theta-alpha (4-12 Hz) ranges, which was most prominent during the inactive stages of the dark cycles. Urethane injection experiments also showed enhanced type II theta activity and altered theta architecture following Cav3.2 ablation. Next, gene candidates from hippocampal transcriptome analysis of control and Cav3.2-/- mice were evaluated using qPCR. Dynein light chain Tctex-Type 1 (Dynlt1b) was significantly reduced in Cav3.2-/- mice. Furthermore, a significant reduction of GABA A receptor δ subunits and GABA B1 receptor subunits was observed in the septohippocampal GABAergic system. Our results demonstrate that ablation of Cav3.2 significantly alters type II theta activity and theta architecture. Transcriptional changes in synaptic transporter proteins and GABA receptors might be functionally linked to the electrophysiological phenotype.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Hipocampo/fisiología , Animales , Canales de Calcio Tipo T/genética , Femenino , Eliminación de Gen , Masculino , Ratones , Transcripción Genética
5.
J Vis Exp ; (147)2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31132044

RESUMEN

Brainstem evoked response audiometry (BERA) is of central relevance in the clinical neurophysiology. As other evoked potential (EP) techniques, such as visually evoked potentials (VEPs) or somatosensory evoked potentials (SEPs), the auditory evoked potentials (AEPs) are triggered by the repetitive presentation of identical stimuli, the electroencephalographic (EEG) response of which is subsequently averaged resulting in distinct positive (p) and negative (n) deflections. In humans, both the amplitude and the latency of individual peaks can be used to characterize alterations in synchronization and conduction velocity in the underlying neuronal circuitries. Importantly, AEPs are also applied in basic and preclinical science to identify and characterize the auditory function in pharmacological and genetic animal models. Even more, animal models in combination with pharmacological testing are utilized to investigate for potential benefits in the treatment of sensorineural hearing loss (e.g., age- or noise-induced hearing deficits). Here we provide a detailed and integrative description of how to record auditory brainstem-evoked responses (ABRs) in mice using click and tone-burst application. A specific focus of this protocol is on pre-experimental animal housing, anesthesia, ABR recording, ABR filtering processes, automated wavelet-based amplitude growth function analysis, and latency detection.


Asunto(s)
Audiometría de Respuesta Evocada , Análisis de Datos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Estimulación Acústica , Animales , Umbral Auditivo , Femenino , Audición , Masculino , Ratones , Ratones Mutantes , Modelos Animales , Ratas , Análisis de Ondículas
6.
Neuroscience ; 409: 81-100, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31029730

RESUMEN

Voltage-gated Ca2+ channels (VGCCs) play key roles in auditory perception and information processing within the inner ear and brainstem. Pharmacological inhibition of low voltage-activated (LVA) T-type Ca2+ channels is related to both age- and noise induced hearing loss in experimental animals and may represent a promising approach to the treatment of auditory impairment of various etiologies. Within the LVA Ca2+ channel subgroup, Cav3.2 is the most prominently expressed T-type channel entity in the cochlea and auditory brainstem. Thus, we performed a complete gender specific click and tone burst based auditory brainstem response (ABR) analysis of Cav3.2+/- and Cav3.2-/- mice, including i.a. temporal progression in hearing loss, amplitude growth function and wave latency analysis as well as a cochlear qPCR based evaluation of other VGCCs transcripts. Our results, based on a self-programmed automated wavelet approach, demonstrate that both heterozygous and Cav3.2 null mutant mice exhibit age-dependent increases in hearing thresholds at 5 months of age. In addition, complex alterations in WI-IV amplitudes and latencies were detected that were not attributable to alterations in the expression of other VGCCs in the auditory tract. Our results clearly demonstrate the important physiological role of Cav3.2 VGCCs in the spatiotemporal organization of auditory processing in young adult mice and suggest potential pharmacological targets for interventions in the future.


Asunto(s)
Umbral Auditivo/fisiología , Canales de Calcio Tipo T/metabolismo , Pérdida Auditiva/metabolismo , Audición/fisiología , Animales , Canales de Calcio Tipo T/genética , Cóclea/metabolismo , Pérdida Auditiva/genética , Ratones , Ratones Noqueados
7.
BMC Res Notes ; 12(1): 157, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894204

RESUMEN

OBJECTIVES: Voltage-gated Ca2+ channels (VGCCs) are of central relevance in regulating Ca2+ influx into living cells. The low-voltage activated (LVA) Cav3 T-type Ca2+ channels are widely distributed throughout the brain including the peripheral auditory system and ascending auditory tract. Their exact role in auditory information processing is still not fully understood. Within the LVA subgroup, Cav3.2 T-type Ca2+ channels seem to be of special importance as qPCR revealed a steady increase in Cav3.2 transcript levels over age, e.g. in the cochlea and spiral ganglion neurons (SGN). Furthermore, pharmacological studies suggested an association between Cav3.2 expression and both age-related and noise-induced hearing loss. Given the potential functional relevance of Cav3.2 VGGCs in sensorineural hearing loss, we recorded gender specific auditory evoked brainstem responses (ABRs) upon both click and tone burst presentation. Here we present auditory brainstem response (ABR) data from Cav3.2+/+, Cav3.2+/- and Cav3.2-/- mice from both genders which are of value for researchers who want to evaluate how Cav3.2 loss affects basic auditory parameters, e.g. click and tone burst based hearing thresholds, amplitude growth function and peak latencies. DATA DESCRIPTION: Information presented here includes ABR data from age-matched female and male Cav3.2+/+, Cav3.2+/- and Cav3.2-/- mice and technical aspects of the auditory recording protocol. Data were recorded using a commercially available ABR setup from Tucker Davis Technologies Inc. (TDT). Raw data files (arf.-file format) were exported as txt.-files with free access for analysis.


Asunto(s)
Audiometría de Respuesta Evocada/métodos , Canales de Calcio Tipo T/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Sensorineural/fisiopatología , Animales , Canales de Calcio Tipo T/deficiencia , Canales de Calcio Tipo T/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Factores Sexuales
8.
Data Brief ; 21: 1263-1266, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30456242

RESUMEN

This data article provides raw auditory evoked brainstem responses (ABRs) from controls and Cav2.3 transgenics, i.e. heterozygous Cav2.3+/- and Cav2.3-/- null mutants. Gender specific ABR recordings were performed in age-matched animals under ketamine/xylazine narcosis. Data presented here include ABRs upon both click and tone burst presentation in the increasing SPL mode using a commercially available ABR setup from Tucker Davis Technologies Inc. (TDT, USA). Detailed information is provided for the sound attenuating cubicle, electrical shielding, electrode parameters, stimulus characteristics and architecture, sampling rate, filtering processes and ABR protocol application during the course of data acquisition and recording. The later are important for subsequent analysis of click and tone burst related hearing thresholds, amplitude growth function and peak latencies. Raw data are available at MENDELEY DATA, DIO: 〈DOI:10.17632/g6ygz2spzx.1〉, URL: 〈https://data.mendeley.com/datasets/g6ygz2spzx/1〉).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...