Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
N Engl J Med ; 390(1): 55-62, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38169490

RESUMEN

Antiamyloid antibodies have been used to reduce cerebral amyloid-beta (Aß) load in patients with Alzheimer's disease. We applied focused ultrasound with each of six monthly aducanumab infusions to temporarily open the blood-brain barrier with the goal of enhancing amyloid removal in selected brain regions in three participants over a period of 6 months. The reduction in the level of Aß was numerically greater in regions treated with focused ultrasound than in the homologous regions in the contralateral hemisphere that were not treated with focused ultrasound, as measured by fluorine-18 florbetaben positron-emission tomography. Cognitive tests and safety evaluations were conducted over a period of 30 to 180 days after treatment. (Funded by the Harry T. Mangurian, Jr. Foundation and the West Virginia University Rockefeller Neuroscience Institute.).


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Terapia por Ultrasonido , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/análisis , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico
2.
Front Oncol ; 13: 1104594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845739

RESUMEN

Patients with metastatic breast cancer have high and continually increasing rates of brain metastases. During the course of the disease, brain metastases can occur in up to 30% of these patients. In most cases, brain metastases are diagnosed after significant disease progression. The blood-tumor barrier increases the difficulty of treating brain metastasis by preventing accumulation of chemotherapy within metastases at therapeutically effective concentrations. Traditional therapies, such as surgical resection, radiotherapy, and chemotherapy, have poor efficacy, as reflected by a low median survival rate of 5-8% after post-diagnosis. Low-intensity focused ultrasound (LiFUS) is a new treatment for enhancing drug accumulation within the brain and brain malignancies. In this study, we elucidate the effect of clinical LiFUS combined with chemotherapy on tumor survival and progression in a preclinical model of triple-negative breast cancer metastasis to the brain. LiFUS significantly increased the tumor accumulation of 14C-AIB and Texas Red compared to controls (p< 0.01). LiFUS-mediated opening of the BTB is size-dependent, which is consistent with our previous studies. Mice receiving LiFUS with combinatorial Doxil and paclitaxel showed a significant increase in median survival (60 days) compared to other groups. LiFUS plus combinatorial chemotherapy of paclitaxel and Doxil also showed the slowest progression of tumor burden compared to chemotherapy alone or individual chemotherapy and LiFUS combinations. This study shows that combining LiFUS with timed combinatorial chemotherapeutic treatment is a potential strategy for improving drug delivery to brain metastases.

3.
Int J Chron Obstruct Pulmon Dis ; 17: 3087-3096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531977

RESUMEN

Introduction: Patient perception of the burden of chronic bronchitis symptoms in chronic obstructive pulmonary disease (COPD) can be assessed using patient-reported outcome measures (PROMs). The Cough and Sputum Assessment Questionnaire (CASA-Q) was developed and tested for this purpose. This study reviewed the performance of the CASA-Q in published online studies and tested a novel approach to complement traditional methods of qualitative content validation. Methods: A targeted literature search was performed to identify published clinical studies of COPD using the CASA-Q as an endpoint. The performance of the questionnaire was examined in relation to other study endpoints, including clinical and functional measurements and other PROMs. Assessment of the content validity of the CASA-Q was carried out by comparing the content and structure of the questionnaire with published qualitative patient data from previously conducted online social media listening (SML) and online bulletin board (OBB) studies. Results: In the interventional clinical trials, CASA-Q change scores were consistent with study objectives and other endpoints, including FEV1 and other PROMs. Two observational studies showed cross-sectional correlations with other PROMs like the St.-George's Respiratory Questionnaire (SGRQ) and COPD assessment test (CAT) scores. Qualitative data from the SML and OBB patient studies were consistent with the content and structure of the CASA-Q, supporting the content validity of the measure. Conclusion: Results suggest that the CASA-Q is appropriately responsive to changes in cough and sputum symptoms and clinical impact in trials of COPD. The mapping of qualitative findings from online SML and OBB studies to CASA-Q domains and items confirm the content validity of the instrument. These results suggest the CASA-Q can be a valuable tool for evaluating treatment effect in COPD trials.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Esputo , Tos , Estudios Transversales , Encuestas y Cuestionarios , Calidad de Vida
4.
Fluids Barriers CNS ; 19(1): 72, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076213

RESUMEN

BACKGROUND: Systemic drug delivery to the central nervous system is limited by presence of the blood-brain barrier (BBB). Low intensity focused ultrasound (LiFUS) is a non-invasive technique to disrupt the BBB, though there is a lack of understanding of the relationship between LiFUS parameters, such as cavitation dose, time of sonication, microbubble dose, and the time course and magnitude of BBB disruption. Discrepancies in these data arise from experimentation with modified, clinically untranslatable transducers and inconsistent parameters for sonication. In this report, we characterize microbubble and cavitation doses as LiFUS variables as they pertain to the time course and size of BBB opening with a clinical Insightec FUS system. METHODS: Female Nu/Nu athymic mice were exposed to LiFUS using the ExAblate Neuro system (v7.4, Insightec, Haifa, Israel) following target verification with magnetic resonance imaging (MRI). Microbubble and cavitation doses ranged from 4-400 µL/kg, and 0.1-1.5 cavitation dose, respectively. The time course and magnitude of BBB opening was evaluated using fluorescent tracers, ranging in size from 105-10,000 Da, administered intravenously at different times pre- or post-LiFUS. Quantitative autoradiography and fluorescence microscopy were used to quantify tracer accumulation in brain. RESULTS: We observed a microbubble and cavitation dose dependent increase in tracer uptake within brain after LiFUS. Tracer accumulation was size dependent, with 14C-AIB (100 Da) accumulating to a greater degree than larger markers (~ 625 Da-10 kDa). Our data suggest opening of the BBB via LiFUS is time dependent and biphasic. Accumulation of solutes was highest when administered prior to LiFUS mediated disruption (2-fivefold increases), but was also significantly elevated at 6 h post treatment for both 14C-AIB and Texas Red. CONCLUSION: The magnitude of LiFUS mediated BBB opening correlates with concentration of microbubbles, cavitation dose as well as time of tracer administration post-sonication. These data help define the window of maximal BBB opening and applicable sonication parameters on a clinically translatable and commercially available FUS system that can be used to improve passive permeability and accumulation of therapeutics targeting the brain.


Asunto(s)
Barrera Hematoencefálica , Microburbujas , Animales , Barrera Hematoencefálica/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Sistemas de Liberación de Medicamentos/métodos , Femenino , Imagen por Resonancia Magnética , Ratones , Permeabilidad , Sonicación/métodos
5.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269805

RESUMEN

Intravenous (IV) iron nanoparticle preparations are widely used to treat iron deficiency. The mechanism of mononuclear phagocyte system-mediated clearance of IV iron nanoparticles is unknown. The early uptake and homeostasis of iron after injection of ferric carboxymaltose (FCM) in mice was studied. An increase in serum iron was observed at 2.5 h followed by a return to baseline by 24 h. An increase in circulating monocytes was observed, particularly Ly6Chi and Ly6Clow. FCM was also associated with a time-dependent decrease in liver Kupffer cells (KCs) and increase in liver monocytes. The increase in liver monocytes suggests an influx of iron-rich blood monocytes, while some KCs underwent apoptosis. Adoptive transfer experiments demonstrated that following liver infiltration, blood monocytes differentiated to KCs. KCs were also critical for IV iron uptake and biodegradation. Indeed, anti-Colony Stimulating Factor 1 Receptor (CSF1R)-mediated depletion of KCs resulted in elevated serum iron levels and impaired iron uptake by the liver. Gene expression profiling indicated that C-C chemokine receptor type 5 (CCR5) might be involved in monocyte recruitment to the liver, confirmed by pharmaceutical inhibition of CCR5. Liver KCs play a pivotal role in the clearance and storage of IV iron and KCs appear to be supported by the expanded blood monocyte population.


Asunto(s)
Macrófagos del Hígado , Nanopartículas , Animales , Carbohidratos , Hierro/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Ratones , Monocitos/metabolismo
6.
Neurooncol Adv ; 3(Suppl 5): v133-v143, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34859240

RESUMEN

The blood-brain barrier is the selectively permeable vasculature of the brain vital for maintaining homeostasis and neurological function. Low permeability is beneficial in the presence of toxins and pathogens in the blood. However, in the presence of metastatic brain tumors, it is a challenge for drug delivery. Although the blood-tumor barrier is slightly leaky, it still is not permissive enough to allow the accumulation of therapeutic drug concentrations in brain metastases. Herein, we discuss the differences between primary brain tumors and metastatic brain tumors vasculature, effects of therapeutics on the blood-tumor barrier, and characteristics to be manipulated for more effective drug delivery.

7.
Arch Toxicol ; 95(11): 3575-3587, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34455456

RESUMEN

In our previous work, PC-9-Br, a PC-9 brain seeking line established via a preclinical animal model of lung cancer brain metastasis (LCBM), exhibited not only resistance to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) gefitinib in vitro, but also chemotherapy regimens of cisplatin plus etoposide in vivo. Using this cell line, we investigated novel potential targeted therapeutics for treating LCBM in vitro and in vivo to combat drug resistance. Significant increases in mRNA and protein expression levels of Bcl-2 were found in PC-9-Br compared with parental PC-9 (PC-9-P), but no significant changes of Bcl-XL were observed. A remarkable synergistic effect between EGFR-TKI gefitinib and Bcl-2 inhibitors ABT-263 (0.17 ± 0.010 µM at 48 h and 0.02 ± 0.004 µM at 72 h), or ABT-199 (0.22 ± 0.008 µM at 48 h and 0.02 ± 0.001 µM at 72 h) to overcome acquired resistance to gefitinib (> 0.5 µM at 48 h and 0.10 ± 0.007 µM at 72 h) in PC-9-Br was observed in MTT assays. AZD9291 was also shown to overcome acquired resistance to gefitinib in PC-9-Br in MTT assays (0.23 ± 0.031 µM at 48 h and 0.03 ± 0.008 µM at 72 h). Western blot showed significantly decreased phospho-Erk1/2 and increased cleaved-caspase-3 expressions were potential synergistic mechanisms for gefitinib + ABT263/ABT199 in PC-9-Br. Significantly decreased protein expressions of phospho-EGFR, phospho-Akt, p21, and survivin were specific synergistic mechanism for gefitinib + ABT199 in PC-9-Br. In vivo studies demonstrated afatinib (30 mg/kg) and AZD9291 (25 mg/kg) could significantly reduce the LCBM in vivo and increase survival percentages of treated mice compared with mice treated with vehicle and gefitinib (6.25 mg/kg). In conclusion, our study demonstrated gefitinib + ABT263/ABT199, afatinib, and AZD9291 have clinical potential to treat LCBM.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/secundario , Resistencia a Antineoplásicos/efectos de los fármacos , Gefitinib/uso terapéutico , Acrilamidas/uso terapéutico , Compuestos de Anilina/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Línea Celular Tumoral , Femenino , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/uso terapéutico
8.
Ther Innov Regul Sci ; 55(5): 1082-1095, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34142363

RESUMEN

OBJECTIVE: To provide an assessment of the quality of the most frequently used self-reported, generic patient-reported outcome measures (PROMs) that measure health-related quality of life (HRQoL) in children against the good research practices recommended by ISPOR task force for the pediatric population. METHOD: Literature search was conducted on OvidSP database to identify the generic pediatric PROMs used in published clinical studies. The quality of PROMs used in more than ten clinical studies were descriptively evaluated against the ISPOR task force's good research practices. RESULTS: Six PROMs were evaluated, namely Pediatric Quality-of-Life inventory 4.0 (PedsQL), Child Health Questionnaire (CHQ), KIDSCREEN, KINDL, DISABKIDS and Child Health and Illness Profile (CHIP). All PROMs, except KIDSCREEN, had versions for different age ranges. Domains of physical, social, emotional health and school activities were common across all the instruments, while domains of family activities, parent relations, independence, and self-esteem were not present in all. Children's input was sought during the development process of PROMs. Likert scales were used in all the instruments, supplemented with faces (smileys) in instruments for children under 8 years. KIDSCREEN and DISABKIDS were developed in a European collaboration project considering the cross-cultural impact during development. CONCLUSION: The comparison of the instruments highlights differences in the versions for different pediatric age groups. None of the PROMs fulfill all the good research practices recommended by the ISPOR task force. Further research is needed to define which age-appropriate domains are important for older children and adolescents.


Asunto(s)
Medición de Resultados Informados por el Paciente , Calidad de Vida , Adolescente , Niño , Humanos , Padres , Autoinforme
9.
Pharmaceutics ; 13(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069733

RESUMEN

The blood-brain barrier (BBB) limits movement of solutes from the lumen of the brain microvascular capillary system into the parenchyma. The unidirectional transfer constant, Kin, is the rate at which transport across the BBB occurs for individual molecules. Single and multiple uptake experiments are available for the determination of Kin for new drug candidates using both intravenous and in situ protocols. Additionally, the single uptake method can be used to determine Kin in heterogeneous pathophysiological conditions such as stroke, brain cancers, and Alzheimer's disease. In this review, we briefly cover the anatomy and physiology of the BBB, discuss the impact of efflux transporters on solute uptake, and provide an overview of the single-timepoint method for determination of Kin values. Lastly, we compare preclinical Kin experimental results with human parallels.

10.
Pharm Res ; 38(5): 803-817, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33982226

RESUMEN

PURPOSE: Therapeutic strategies to treat ischemic stroke are limited due to the heterogeneity of cerebral ischemic injury and the mechanisms that contribute to the cell death. Since oxidative stress is one of the primary mechanisms that cause brain injury post-stroke, we hypothesized that therapeutic targets that modulate mitochondrial function could protect against reperfusion-injury after cerebral ischemia, with the focus here on a mitochondrial protein, mitoNEET, that modulates cellular bioenergetics. METHOD: In this study, we evaluated the pharmacology of the mitoNEET ligand NL-1 in an in vivo therapeutic role for NL-1 in a C57Bl/6 murine model of ischemic stroke. RESULTS: NL-1 decreased hydrogen peroxide production with an IC50 of 5.95 µM in neuronal cells (N2A). The in vivo activity of NL-1 was evaluated in a murine 1 h transient middle cerebral artery occlusion (t-MCAO) model of ischemic stroke. We found that mice treated with NL-1 (10 mg/kg, i.p.) at time of reperfusion and allowed to recover for 24 h showed a 43% reduction in infarct volume and 68% reduction in edema compared to sham-injured mice. Additionally, we found that when NL-1 was administered 15 min post-t-MCAO, the ischemia volume was reduced by 41%, and stroke-associated edema by 63%. CONCLUSION: As support of our hypothesis, as expected, NL-1 failed to reduce stroke infarct in a permanent photothrombotic occlusion model of stroke. This report demonstrates the potential therapeutic benefits of using mitoNEET ligands like NL-1 as novel mitoceuticals for treating reperfusion-injury with cerebral stroke.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ataque Isquémico Transitorio/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Animales , Moléculas de Adhesión Celular Neuronal/uso terapéutico , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Humanos , Inyecciones Intraperitoneales , Proteínas de Unión a Hierro/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos
11.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925597

RESUMEN

Iron is a critical metal for several vital biological processes. Most of the body's iron is bound to hemoglobin in erythrocytes. Iron from senescent red blood cells is recycled by macrophages in the spleen, liver and bone marrow. Dietary iron is taken up by the divalent metal transporter 1 (DMT1) in enterocytes and transported to portal blood via ferroportin (FPN), where it is bound to transferrin and taken up by hepatocytes, macrophages and bone marrow cells via transferrin receptor 1 (TfR1). While most of the physiologically active iron is bound hemoglobin, the major storage of most iron occurs in the liver in a ferritin-bound fashion. In response to an increased iron load, hepatocytes secrete the peptide hormone hepcidin, which binds to and induces internalization and degradation of the iron transporter FPN, thus controlling the amount of iron released from the cells into the blood. This review summarizes the key mechanisms and players involved in cellular and systemic iron regulation.


Asunto(s)
Hierro/metabolismo , Hierro/fisiología , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Enterocitos/metabolismo , Ferritinas/metabolismo , Hemoglobinas/metabolismo , Hepatocitos/metabolismo , Humanos , Hierro de la Dieta/metabolismo , Hígado/metabolismo , Receptores de Transferrina/metabolismo , Bazo/metabolismo , Transferrina/metabolismo
12.
Transl Oncol ; 13(6): 100775, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32408199

RESUMEN

Breast cancer patients presenting with symptomatic brain metastases have poor prognosis, and current chemotherapeutic agents are largely ineffective. In this study, we evaluated the hypomethylating agent azacitidine (AZA) for its potential as a novel therapeutic in preclinical models of brain metastasis of breast cancer. We used the parental triple-negative breast cancer MDA-MB-231 (231) cells and their brain colonizing counterpart (231Br) to ascertain phenotypic differences in response to AZA. We observed that 231Br cells have higher metastatic potential compared to 231 cells. With regard to therapeutic value, the AZA IC50 value in 231Br cells is significantly lower than that in parental cells (P < .01). AZA treatment increased apoptosis and inhibited the Wnt signaling transduction pathway, angiogenesis, and cell metastatic capacity to a significantly higher extent in the 231Br line. AZA treatment in mice with experimental brain metastases significantly reduced tumor burden (P = .0112) and increased survival (P = .0026) compared to vehicle. Lastly, we observed a decreased expression of keratin 18 (an epithelial maker) in 231Br cells due to hypermethylation, elucidating a potential mechanism of action of AZA in treating brain metastases from breast cancer.

13.
Int J Pharm ; 578: 119090, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32004683

RESUMEN

Ischemic reperfusion injury after a stroke is a leading cause of mortality and disability due to neuronal loss and tissue damage. Mitochondrial dysfunction plays a major role in the reperfusion-injury sequelae, and offers an attractive drug target. Mitochondrial derived reactive oxygen species (ROS) and resultant apoptotic cascade are among the primary mechanisms of neuronal death following ischemia and reperfusion injury. Here we optimized a nanoparticle formulation for the mitoNEET ligand NL-1, to target mitochondrial dysfunction post ischemic reperfusion (IR) injury. NL-1, a hydrophobic drug, was formulated using PLGA polymers with a particle size and entrapment efficiency of 123.9 ± 17.1 nm and 59.7 ± 10.1%, respectively. The formulation was characterized for physical state of NL-1, in vitro release, uptake and nanoparticle localization. A near complete uptake of nanoparticles was found to occur by three hours, with the process being energy-dependent and occurring via caveolar mediated endocytosis. The fluorescent nanoparticles were found to localize in the cytoplasm of the endothelial cells. An in vitro oxygen glucose deprivation (OGD) model to mimic IR was employed for in vitro efficacy testing in murine brain vascular endothelium cells (bEND.3 cells). Efficacy studies showed that both NL-1 and the nanoparticles loaded with NL-1 had a protective activity against peroxide generation, and displayed improved cellular viability, as seen via reduction in cellular apoptosis. Finally, PLGA nanoparticles were found to have a non-toxic profile in vitro, and were found to be safe for intravenous administration. This study lays the preliminary work for potential use of mitoNEET as a target and NL-1 as a therapeutic for the treatment of cerebral ischemia and reperfusion injury.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Encéfalo/citología , Línea Celular , Liberación de Fármacos , Células Endoteliales/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Proteínas de Unión a Hierro , Ligandos , Proteínas de la Membrana , Ratones , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Especies Reactivas de Oxígeno/metabolismo
14.
J Mol Cell Cardiol ; 139: 24-32, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31972266

RESUMEN

AIMS: Sirtuin 6 (Sirt6) is a NAD+-dependent deacetylase that plays a key role in DNA repair, inflammation and lipid regulation. Sirt6-null mice show severe metabolic defects and accelerated aging. Macrophage-foam cell formation via scavenger receptors is a key step in atherogenesis. We determined the effects of bone marrow-restricted Sirt6 deletion on foam cell formation and atherogenesis using a mouse model. METHODS AND RESULTS: Sirt6 deletion in bone marrow-derived cells increased aortic plaques, lipid content and macrophage numbers in recipient Apoe-/- mice fed a high-cholesterol diet for 12 weeks (n = 12-14, p < .001). In RAW macrophages, Sirt6 overexpression reduced oxidized low-density lipoprotein (oxLDL) uptake, Sirt6 knockdown enhanced it and increased mRNA and protein levels of macrophage scavenger receptor 1 (Msr1), whereas levels of other oxLDL uptake and efflux transporters remained unchanged. Similarly, in human primary macrophages, Sirt6 knockdown increased MSR1 protein levels and oxLDL uptake. Double knockdown of Sirt6 and Msr1 abolished the increase in oxLDL uptake observed upon Sirt6 single knockdown. FACS analyses of macrophages from aortic plaques of Sirt6-deficient bone marrow-transplanted mice showed increased MSR1 protein expression. Double knockdown of Sirt6 and the transcription factor c-Myc in RAW cells abolished the increase in Msr1 mRNA and protein levels; c-Myc overexpression increased Msr1 mRNA and protein levels. CONCLUSIONS: Loss of Sirt6 in bone marrow-derived cells is proatherogenic; hereby macrophages play an important role given a c-Myc-dependent increase in MSR1 protein expression and an enhanced oxLDL uptake in human and murine macrophages. These findings assign endogenous SIRT6 in macrophages an important atheroprotective role.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Médula Ósea/patología , Eliminación de Gen , Receptores Depuradores de Clase A/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Animales , Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Trasplante de Médula Ósea , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Hematopoyesis , Homocigoto , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Modelos Biológicos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células RAW 264.7
15.
Trends Cancer ; 5(8): 495-505, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31421906

RESUMEN

Brain metastases encompass nearly 80% of all intracranial tumors. A late stage diagnosis confers a poor prognosis, with patients typically surviving less than 2 years. Poor survival can be equated to limited effective treatment modalities. One reason for the failure rates is the presence of the blood-brain barrier (BBB) and blood-tumor barrier (BTB) that limit the access of potentially effective chemotherapeutics to metastatic lesions. Strategies to overcome these barriers include new small molecule entities capable of crossing into the brain parenchyma, novel formulations of existing chemotherapies, and disruptive techniques. Here, we review BBB physiology and BTB pathophysiology. Additionally, we review the limitations of routinely practiced therapies and three current methods being explored for BBB/BTB disruption for improved delivery of chemotherapy to brain tumors.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/terapia , Quimioradioterapia/métodos , Sistemas de Liberación de Medicamentos/métodos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/efectos de la radiación , Neoplasias Encefálicas/secundario , Quimioradioterapia/tendencias , Ensayos Clínicos como Asunto , Humanos , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Resultado del Tratamiento , Terapia por Ultrasonido/métodos
16.
Eur Heart J ; 36(1): 51-9, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24603306

RESUMEN

AIMS: The deacetylase sirtuin 1 (Sirt1) exerts beneficial effects on lipid metabolism, but its roles in plasma LDL-cholesterol regulation and atherosclerosis are controversial. Thus, we applied the pharmacological Sirt1 activator SRT3025 in a mouse model of atherosclerosis and in hepatocyte culture. METHODS AND RESULTS: Apolipoprotein E-deficient (Apoe(-/-)) mice were fed a high-cholesterol diet (1.25% w/w) supplemented with SRT3025 (3.18 g kg(-1) diet) for 12 weeks. In vitro, the drug activated wild-type Sirt1 protein, but not the activation-resistant Sirt1 mutant; in vivo, it increased deacetylation of hepatic p65 and skeletal muscle Foxo1. SRT3025 treatment decreased plasma levels of LDL-cholesterol and total cholesterol and reduced atherosclerosis. Drug treatment did not change mRNA expression of hepatic LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 (Pcsk9), but increased their protein expression indicating post-translational effects. Consistent with hepatocyte Ldlr and Pcsk9 accumulation, we found reduced plasma levels of Pcsk9 after pharmacological Sirt1 activation. In vitro administration of SRT3025 to cultured AML12 hepatocytes attenuated Pcsk9 secretion and its binding to Ldlr, thereby reducing Pcsk9-mediated Ldlr degradation and increasing Ldlr expression and LDL uptake. Co-administration of exogenous Pcsk9 with SRT3025 blunted these effects. Sirt1 activation with SRT3025 in Ldlr(-/-) mice reduced neither plasma Pcsk9, nor LDL-cholesterol levels, nor atherosclerosis. CONCLUSION: We identify reduction in Pcsk9 secretion as a novel effect of Sirt1 activity and uncover Ldlr as a prerequisite for Sirt1-mediated atheroprotection in mice. Pharmacological activation of Sirt1 appears promising to be tested in patients for its effects on plasma Pcsk9, LDL-cholesterol, and atherosclerosis.


Asunto(s)
Arteriosclerosis/prevención & control , Hepatocitos/metabolismo , Proproteína Convertasas/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Sirtuina 1/metabolismo , Anilidas/farmacología , Animales , Anticolesterolemiantes/farmacología , Apolipoproteínas E/deficiencia , Células Cultivadas , LDL-Colesterol/metabolismo , Inhibidores Enzimáticos/farmacología , Hepatocitos/efectos de los fármacos , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Proproteína Convertasa 9 , ARN Mensajero/metabolismo , Receptores de LDL/efectos de los fármacos , Tiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...