Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(9): 107560, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37649698

RESUMEN

ATP-gated P2X7 receptors (P2X7Rs) play a crucial role in brain disorders. However, how they affect normal and pathological synaptic transmission is still largely unclear. Here, by using whole-cell patch-clamp technique to record AMPA- and NMDA receptor-mediated excitatory postsynaptic currents (s/mEPSCs) in dentate gyrus granule cells (DG GCs), we revealed a modulation by P2X7Rs of presynaptic sites, especially originated from entorhinal cortex (EC)-GC path but not the mossy cell (MC)-GC path. The involvement of P2X7Rs was confirmed using a pharmacological approach. Additionally, the acute activation of P2X7Rs directly elevated calcium influx from EC-GC terminals. In postnatal phencyclidine (PCP)-induced mouse model of schizophrenia, we observed that P2X7R deficiency restored the EC-GC synapse alteration and alleviated PCP-induced symptoms. To summarize, P2X7Rs participate in the modulation of GC excitatory neurotransmission in the DG via EC-GC pathway, contributing to pathological alterations of neuronal functions leading to neurodevelopmental disorders.

2.
eNeuro ; 10(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697256

RESUMEN

Morphologically similar axon boutons form synaptic contacts with diverse types of postsynaptic cells. However, it is less known to what extent the local axonal excitability, presynaptic action potentials (APs), and AP-evoked calcium influx contribute to the functional diversity of synapses and neuronal activity. This is particularly interesting in synapses that contact cell types that show only subtle cellular differences but fulfill completely different physiological functions. Here, we tested these questions in two synapses that are formed by rat hippocampal granule cells (GCs) onto hilar mossy cells (MCs) and CA3 pyramidal cells, which albeit share several morphologic and synaptic properties but contribute to distinct physiological functions. We were interested in the deterministic steps of the action potential-calcium ion influx coupling as these complex modules may underlie the functional segregation between and within the two cell types. Our systematic comparison using direct axonal recordings showed that AP shapes, Ca2+ currents and their plasticity are indistinguishable in synapses onto these two cell types. These suggest that the complete module that couples granule cell activity to synaptic release is shared by hilar mossy cells and CA3 pyramidal cells. Thus, our findings present an outstanding example for the modular composition of distinct cell types, by which cells employ different components only for those functions that are deterministic for their specialized functions, while many of their main properties are shared.


Asunto(s)
Calcio , Fibras Musgosas del Hipocampo , Ratas , Animales , Potenciales de Acción/fisiología , Fibras Musgosas del Hipocampo/fisiología , Calcio/metabolismo , Transmisión Sináptica/fisiología , Células Piramidales/fisiología , Terminales Presinápticos/fisiología , Sinapsis/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599103

RESUMEN

Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.


Asunto(s)
Proteína 2 Inhibidora de la Diferenciación/genética , Transcripción Genética/genética , Animales , Epilepsia del Lóbulo Temporal/genética , Ratones , Fibras Musgosas del Hipocampo/fisiología , Neurogénesis/genética , Ratas
4.
Elife ; 92020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32490811

RESUMEN

CCK-expressing interneurons (CCK+INs) are crucial for controlling hippocampal activity. We found two firing phenotypes of CCK+INs in rat hippocampal CA3 area; either possessing a previously undetected membrane potential-dependent firing or regular firing phenotype, due to different low-voltage-activated potassium currents. These different excitability properties destine the two types for distinct functions, because the former is essentially silenced during realistic 8-15 Hz oscillations. By contrast, the general intrinsic excitability, morphology and gene-profiles of the two types were surprisingly similar. Even the expression of Kv4.3 channels were comparable, despite evidences showing that Kv4.3-mediated currents underlie the distinct firing properties. Instead, the firing phenotypes were correlated with the presence of distinct isoforms of Kv4 auxiliary subunits (KChIP1 vs. KChIP4e and DPP6S). Our results reveal the underlying mechanisms of two previously unknown types of CCK+INs and demonstrate that alternative splicing of few genes, which may be viewed as a minor change in the cells' whole transcriptome, can determine cell-type identity.


Asunto(s)
Región CA3 Hipocampal/citología , Colecistoquinina/metabolismo , Interneuronas , Canales de Potasio Shal , Animales , Células Cultivadas , Interneuronas/química , Interneuronas/clasificación , Interneuronas/metabolismo , Potenciales de la Membrana/fisiología , Fenotipo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Canales de Potasio Shal/química , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Transcriptoma/genética
5.
Nutr Neurosci ; 21(5): 317-327, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28185482

RESUMEN

OBJECTIVES: The aim of the study was to understand the effects of suckling on the brain of the pups by mapping their brain activation pattern in response to suckling. METHODS: The c-fos method was applied to identify activated neurons. Fasted rat pups were returned to their mothers for suckling and sacrificed 2 hours later for Fos immunohistochemistry. Double labeling was also performed to characterize some of the activated neurons. For comparison, another group of fasted pups were given dry food before Fos mapping. RESULTS: After suckling, we found an increase in the number of Fos-immunoreactive neurons in the insular and somatosensory cortices, central amygdaloid nucleus (CAm), paraventricular (PVN) and supraoptic hypothalamic nuclei, lateral parabrachial nucleus (LPB), nucleus of the solitary tract (NTS), and the area postrema. Double labeling experiments demonstrated the activation of calcitonin gene-related peptide-ir (CGRP-ir) neurons in the LPB, corticotropin-releasing hormone-ir (CRH-ir) but not oxytocin-ir neurons in the PVN, and noradrenergic neurons in the NTS. In the CAm, Fos-ir neurons did not contain CRH but were apposed to CGRP-ir fiber terminals. Refeeding with dry food-induced Fos activation in all brain areas activated by suckling. The degree of activation was higher following dry food consumption than suckling in the insular cortex, and lower in the supraoptic nucleus and the NTS. Furthermore, the accumbens, arcuate, and dorsomedial hypothalamic nuclei, and the lateral hypothalamic area, which were not activated by suckling, showed activation by dry food. DISCUSSION: Neurons in a number of brain areas are activated during suckling, and may participate in the signaling of satiety, taste perception, reward, food, and salt balance regulation.


Asunto(s)
Animales Lactantes , Encéfalo/fisiología , Ingestión de Alimentos/fisiología , Animales , Animales Recién Nacidos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Núcleo Amigdalino Central/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Regulación de la Expresión Génica , Inmunohistoquímica , Masculino , Neuronas/metabolismo , Oxitocina/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Tirosina 3-Monooxigenasa/metabolismo , Destete
6.
Front Neuroanat ; 8: 53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25009471

RESUMEN

Pyramidal cells of the ventral hippocampal CA1 area have numerous and diverse distant projections to other brain regions including the temporal and parietal association areas, visual, auditory, olfactory, somatosensory, gustatory, and visceral areas, and inputs to the amygdalar and prefrontal-orbital-agranular insular region. In addition, their differential expression of proteins like calbindin provides further indications for cellular diversity. This raises the possibility that the pyramidal cells may form subpopulations participating in different brain circuitries. To address this hypothesis we applied the juxtacellular labeling technique to fill individual pyramidal cells in the ventral hippocampus with neurobiotin in urethane anesthetized rats. For each labeled pyramidal cell we determined soma location, dendritic arborizations and selective expression of calbindin and norbin. Reconstruction and mapping of long-range axonal projections were made with the Neurolucida system. We found three major routes of ventral CA1 pyramidal cell projections. The classical pathway run caudo-ventrally across and innervating the subiculum, further to the parahippocampal regions and then to the deep and superficial layers of entorhinal cortex. The other two pathways avoided subiculum by branching from the main axon close to the soma and either traveled antero- and caudo-ventrally to amygdaloid complex, amygdalopiriform-transition area and parahippocampal regions or run antero-dorsally through the fimbria-fornix to the septum, hypothalamus, ventral striatum and olfactory regions. We found that most pyramidal cells investigated used all three major routes to send projecting axons to other brain areas. Our results suggest that the information flow through the ventral hippocampus is distributed by wide axonal projections from the CA1 area.

7.
Behav Pharmacol ; 18(5-6): 515-20, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17762520

RESUMEN

We report here that local hippocampal WIN-55,212-2 implants release this cannabinoid agonist for extended periods, the release is restricted to the implanted brain region and is behaviorally active. Radiolabeled WIN-55,212-2 was implanted bilaterally into the CA3 region of the dorsal hippocampus by means of fused silica capillaries. Significant amounts of the compound were released from the implants for at least 10 days. No labeled WIN-55,212-2 was detected in other brain regions, for example, the cortex, amygdala, thalamus, hypothalamus, and pons. In a separate experiment, radiolabeled WIN-55,212-2 was implanted chronically into the same hippocampal region, and rats were assessed 8 days later in the object-recognition test. In contrast to controls, rats implanted with WIN-55,212-2 were unable to differentiate familiar and unfamiliar objects. Object recognition was reinstated by the cannabinoid antagonist SR141716A, as rats implanted with both WIN-55,212-2 and SR141716A did not differ from controls. Thus, chronic hippocampal WIN-55,212-2 implants impaired recognition memory via the CB1 receptor. The memory-impairing effects of acute cannabinoid treatments are well known, but the effects of chronic treatments are controversial. The rate and magnitude of tolerance, however, have been shown to be brain-area specific and cell-type specific. Here we show that chronic hippocampal treatments impair memory, suggesting that no tolerance develops in the hippocampus towards the memory-impairing effects of cannabinoids. The data also suggest that chronic, brain-area-specific effects of cannabinoids can be studied by the novel method described here.


Asunto(s)
Benzoxazinas/efectos adversos , Tolerancia a Medicamentos , Trastornos de la Memoria/inducido químicamente , Morfolinas/efectos adversos , Naftalenos/efectos adversos , Receptor Cannabinoide CB1/agonistas , Animales , Benzoxazinas/farmacocinética , Cannabinoides/efectos adversos , Condicionamiento Operante/efectos de los fármacos , Preparaciones de Acción Retardada , Aprendizaje Discriminativo/efectos de los fármacos , Esquema de Medicación , Implantes de Medicamentos , Hipocampo , Masculino , Morfolinas/farmacocinética , Naftalenos/farmacocinética , Piperidinas , Pirazoles , Ratas , Ratas Wistar , Reconocimiento en Psicología/efectos de los fármacos , Rimonabant , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...