Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biol Res ; 57(1): 29, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760841

RESUMEN

BACKGROUND: We recently reported that upregulation of Musashi 2 (MSI2) protein in the rare neuromuscular disease myotonic dystrophy type 1 contributes to the hyperactivation of the muscle catabolic processes autophagy and UPS through a reduction in miR-7 levels. Because oleic acid (OA) is a known allosteric regulator of MSI2 activity in the biogenesis of miR-7, here we sought to evaluate endogenous levels of this fatty acid and its therapeutic potential in rescuing cell differentiation phenotypes in vitro. In this work, four muscle cell lines derived from DM1 patients were treated with OA for 24 h, and autophagy and muscle differentiation parameters were analyzed. RESULTS: We demonstrate a reduction of OA levels in different cell models of the disease. OA supplementation rescued disease-related phenotypes such as fusion index, myotube diameter, and repressed autophagy. This involved inhibiting MSI2 regulation of direct molecular target miR-7 since OA isoschizomer, elaidic acid (EA) could not cause the same rescues. Reduction of OA levels seems to stem from impaired biogenesis since levels of the enzyme stearoyl-CoA desaturase 1 (SCD1), responsible for converting stearic acid to oleic acid, are decreased in DM1 and correlate with OA amounts. CONCLUSIONS: For the first time in DM1, we describe a fatty acid metabolism impairment that originated, at least in part, from a decrease in SCD1. Because OA allosterically inhibits MSI2 binding to molecular targets, reduced OA levels synergize with the overexpression of MSI2 and contribute to the MSI2 > miR-7 > autophagy axis that we proposed to explain the muscle atrophy phenotype.


Asunto(s)
Distrofia Miotónica , Ácido Oléico , Ácido Oléico/farmacología , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/metabolismo , Humanos , Diferenciación Celular/efectos de los fármacos , MicroARNs/metabolismo , Autofagia/efectos de los fármacos , Línea Celular , Proteínas de Unión al ARN/metabolismo
2.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38655653

RESUMEN

Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.


Asunto(s)
Dexametasona , Modelos Biológicos , Contracción Muscular , Enfermedades Musculares , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Taurina , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Taurina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Contracción Muscular/efectos de los fármacos , Dexametasona/farmacología , Enfermedades Musculares/patología , Enfermedades Musculares/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Fuerza Muscular/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Corticoesteroides/farmacología , Ubiquitina/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/metabolismo , Esteroides/farmacología
3.
Biomed J ; : 100667, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37797921

RESUMEN

BACKGROUND: Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the 3' untranslated region of the DM1 protein kinase gene. Characteristic degenerative muscle symptoms include myotonia, atrophy, and weakness. We previously proposed an MSI2>miR-7>autophagy axis whereby MSI2 overexpression repressed miR-7 biogenesis that subsequently de-repressed muscle catabolism through excessive autophagy. Because the DM1 HSALR mouse model expressing expanded CUG repeats shows weak muscle-wasting phenotypes, we hypothesized that MSI2 overexpression was sufficient to promote muscle dysfunction in vivo. METHODS: By means of recombinant AAV murine Msi2 was overexpressed in neonates HSALR mice skeletal muscle to induce DM1-like phenotypes RESULTS: Sustained overexpression of the murine Msi2 protein in HSALR neonates induced autophagic flux and expression of critical autophagy proteins, increased central nuclei and reduced myofibers area, and weakened muscle strength. Importantly, these changes were independent of Mbnl1, Mbnl2, and Celf1 protein levels, which remained unchanged upon Msi2 overexpression. CONCLUSIONS: Globally, molecular, histological, and functional data from these experiments in the HSALR mouse model confirms the pathological role of Msi2 expression levels as an atrophy-associated component that impacts the characteristic muscle dysfunction symptoms in DM1 patients.

4.
Mol Ther Nucleic Acids ; 34: 102024, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37744174

RESUMEN

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.

5.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372969

RESUMEN

Myotonic dystrophy type 1 (DM1) is a complex rare disorder characterized by progressive muscle dysfunction, involving weakness, myotonia, and wasting, but also exhibiting additional clinical signs in multiple organs and systems. Central dysregulation, caused by an expansion of a CTG trinucleotide repeat in the DMPK gene's 3' UTR, has led to exploring various therapeutic approaches in recent years, a few of which are currently under clinical trial. However, no effective disease-modifying treatments are available yet. In this study, we demonstrate that treatments with boldine, a natural alkaloid identified in a large-scale Drosophila-based pharmacological screening, was able to modify disease phenotypes in several DM1 models. The most significant effects include consistent reduction in nuclear RNA foci, a dynamic molecular hallmark of the disease, and noteworthy anti-myotonic activity. These results position boldine as an attractive new candidate for therapy development in DM1.


Asunto(s)
Distrofia Miotónica , Animales , Ratones , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Drosophila/genética , Fenotipo , Línea Celular , Expansión de Repetición de Trinucleótido
6.
Pharmaceutics ; 15(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37111604

RESUMEN

The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.

7.
Mol Ther Nucleic Acids ; 31: 324-338, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36789274

RESUMEN

A single-nucleotide deletion in the stop codon of the nuclear import receptor transportin-3 (TNPO3), also involved in human immunodeficiency virus type 1 (HIV-1) infection, causes the ultrarare autosomal dominant disease limb-girdle muscular dystrophy D2 (LGMDD2) by extending the wild-type protein. Here, we generated a patient-derived in vitro model of LGMDD2 as an immortalized myoblast cell line carrying the TNP O 3 mutation. The cell model reproduced critical molecular alterations seen in patients, such as TNP O 3 overexpression, defects in terminal muscle markers, and autophagy overactivation. Correction of the TNP O 3 mutation via CRISPR-Cas9 editing caused a significant reversion of the pathological phenotypes in edited cells, including a complete absence of the mutant TNPO3 protein, as detected with a polyclonal antibody specific against the abnormal 15-aa peptide. Transcriptomic analyses found that 15% of the transcriptome was differentially expressed in model myotubes. CRISPR-Cas9-corrected cells showed that 44% of the alterations were rescued toward normal levels. MicroRNAs (miRNAs) analyses showed that around 50% of miRNAs with impaired expression because of the disease were recovered on the mutation edition. In summary, this work provides proof of concept of the potential of CRISPR-Cas9-mediated gene editing of TNP O 3 as a therapeutic approach and describes critical reagents in LGMDD2 research.

8.
Sci Rep ; 13(1): 503, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627397

RESUMEN

Myotonic dystrophy type 1 (DM1) is a severe autosomal dominant neuromuscular disease in which the musculoskeletal system contributes substantially to overall mortality and morbidity. DM1 stems from a noncoding CTG trinucleotide repeat expansion in the DMPK gene. The human skeletal actin long repeat (HSALR) mouse model reproduces several aspects of the disease, but the muscle-wasting phenotype of this model has never been characterized in vivo. Herein, we used quantitative MRI to measure the fat and muscle volumes in the leg compartment (LC) of mice. These acquired data were processed to extract relevant parameters such as fat fraction and fat infiltration (fat LC/LC) in HSALR and control (FBV) muscles. These results showed increased fat volume (fat LC) and fat infiltration within the muscle tissue of the leg compartment (muscle LC), in agreement with necropsies, in which fatty clumps were observed, and consistent with previous findings in DM1 patients. Model mice did not reproduce the characteristic impaired fat fraction, widespread fat replacement through the muscles, or reduced muscle volume reported in patients. Taken together, the observed abnormal replacement of skeletal muscle by fat in the HSALR mice indicates that these mice partially reproduced the muscle phenotype observed in humans.


Asunto(s)
Distrofia Miotónica , Humanos , Ratones , Animales , Distrofia Miotónica/diagnóstico por imagen , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Expansión de Repetición de Trinucleótido , Fenotipo , Imagen por Resonancia Magnética
9.
Drug Discov Today ; 28(3): 103489, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634841

RESUMEN

The beginning of the 20th decade has witnessed an increase in drug development programs for myotonic dystrophy type 1 (DM1). We have collected nearly 20 candidate drugs with accomplished preclinical and clinical phases, updating our previous drug development pipeline review with new entries and relevant milestones for pre-existing candidates. Three interventional first-in-human clinical trials got underway with distinct drug classes, namely AOC 1001 and DYNE-101 nucleic acid-based therapies, and the small molecule pitolisant, which joins the race toward market authorization with other repurposed drugs, including tideglusib, metformin, or mexiletine, already in clinical evaluation. Furthermore, newly disclosed promising preclinical data for several additional nucleic-acid therapeutic candidates and a CRISPR-based approach, as well as the advent into the pipeline of novel therapeutic programs, increase the plausibility of success in the demanding task of providing valid treatments to patients with DM1.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Desarrollo de Medicamentos
10.
Cell Biol Toxicol ; 39(3): 751-770, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34448959

RESUMEN

Autophagy is a conserved intracellular catabolic pathway that removes cytoplasmic components to contribute to neuronal homeostasis. Accumulating evidence has increasingly shown that the induction of autophagy improves neuronal health and extends longevity in several animal models. Therefore, there is a great interest in the identification of effective autophagy enhancers with potential nutraceutical or pharmaceutical properties to ameliorate age-related diseases, such as neurodegenerative disorders, and/or promote longevity. Queen bee acid (QBA, 10-hydroxy-2-decenoic acid) is the major fatty acid component of, and is found exclusively in, royal jelly, which has beneficial properties for human health. It is reported that QBA has antitumor, anti-inflammatory, and antibacterial activities and promotes neurogenesis and neuronal health; however, the mechanism by which QBA exerts these effects has not been fully elucidated. The present study investigated the role of the autophagic process in the protective effect of QBA. We found that QBA is a novel autophagy inducer that triggers autophagy in various neuronal cell lines and mouse and fly models. The beclin-1 (BECN1) and mTOR pathways participate in the regulation of QBA-induced autophagy. Moreover, our results showed that QBA stimulates sirtuin 1 (SIRT1), which promotes autophagy by the deacetylation of critical ATG proteins. Finally, QBA-mediated autophagy promotes neuroprotection in Parkinson's disease in vitro and in a mouse model and extends the lifespan of Drosophila melanogaster. This study provides detailed evidences showing that autophagy induction plays a critical role in the beneficial health effects of QBA.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Humanos , Abejas , Animales , Neuroprotección , Drosophila melanogaster , Autofagia , Línea Celular , Fármacos Neuroprotectores/farmacología
11.
Cell Mol Life Sci ; 79(8): 441, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35864358

RESUMEN

Spinal muscular atrophy (SMA) is a genetic disease resulting in the loss of α-motoneurons followed by muscle atrophy. It is caused by knock-out mutations in the survival of motor neuron 1 (SMN1) gene, which has an unaffected, but due to preferential exon 7 skipping, only partially functional human-specific SMN2 copy. We previously described a Drosophila-based screening of FDA-approved drugs that led us to discover moxifloxacin. We showed its positive effect on the SMN2 exon 7 splicing in SMA patient-derived skin cells and its ability to increase the SMN protein level. Here, we focus on moxifloxacin's therapeutic potential in additional SMA cellular and animal models. We demonstrate that moxifloxacin rescues the SMA-related molecular and phenotypical defects in muscle cells and motoneurons by improving the SMN2 splicing. The consequent increase of SMN levels was higher than in case of risdiplam, a potent exon 7 splicing modifier, and exceeded the threshold necessary for a survival improvement. We also demonstrate that daily subcutaneous injections of moxifloxacin in a severe SMA murine model reduces its characteristic neuroinflammation and increases the SMN levels in various tissues, leading to improved motor skills and extended lifespan. We show that moxifloxacin, originally used as an antibiotic, can be potentially repositioned for the SMA treatment.


Asunto(s)
Atrofia Muscular Espinal , Animales , Modelos Animales de Enfermedad , Exones/genética , Humanos , Ratones , Moxifloxacino/farmacología , Moxifloxacino/uso terapéutico , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fenotipo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
12.
Mol Ther Nucleic Acids ; 27: 1146-1155, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35282418

RESUMEN

Myotonic dystrophy type 1 is a debilitating neuromuscular disease causing muscle weakness, myotonia, and cardiac dysfunction. The phenotypes are caused by muscleblind-like (MBNL) protein sequestration by toxic RNA in the DM1 protein kinase (DMPK) gene. DM1 patients exhibit a pathogenic number of repetitions in DMPK, which leads to downstream symptoms. Another disease characteristic is altered microRNA (miRNA) expression. It was previously shown that miR-23b regulates the translation of MBNL1 into protein. Antisense oligonucleotide (AON) treatment targeting this miRNA can improve disease symptoms. Here, we present a refinement of this strategy targeting a miR-23b binding site on the MBNL1 3' UTR in DM1 model cells and mice by using AONs called blockmiRs. BlockmiRs linked to novel cell-penetrating peptide chemistry showed an increase in MBNL1 protein in DM1 model cells and HSALR mice. They also showed an increase in muscle strength and significant rescue of downstream splicing and histological phenotypes in mice without disturbing the endogenous levels of other miR-23b target transcripts.

13.
Methods Mol Biol ; 2434: 207-215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213019

RESUMEN

Western blot assays are not adequate for high-throughput screening of protein expression because it is an expensive and time-consuming technique. Here we demonstrate that quantitative dot blots in plate format are a better option to determine the absolute contents of a given protein in less than 48 h. The method was optimized for the detection of the Muscleblind-like 1 protein in patient-derived myoblasts treated with a collection of more than 100 experimental oligonucleotides.


Asunto(s)
Distrofia Miotónica , Humanos , Immunoblotting , Mioblastos/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas de Unión al ARN/metabolismo
14.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163365

RESUMEN

Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3' polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.


Asunto(s)
Biología Computacional/métodos , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Adulto , Empalme Alternativo , Animales , Inteligencia Artificial , Humanos , Análisis de la Célula Individual
15.
Sci Rep ; 11(1): 19417, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593893

RESUMEN

In Myotonic Dystrophy type 1 (DM1), a non-coding CTG repeats rare expansion disease; toxic double-stranded RNA hairpins sequester the RNA-binding proteins Muscleblind-like 1 and 2 (MBNL1 and 2) and trigger other DM1-related pathogenesis pathway defects. In this paper, we characterize four D-amino acid hexapeptides identified together with abp1, a peptide previously shown to stabilize CUG RNA in its single-stranded conformation. With the generalized sequence cpy(a/t)(q/w)e, these related peptides improved three MBNL-regulated exon inclusions in DM1-derived cells. Subsequent experiments showed that these compounds generally increased the relative expression of MBNL1 and its nuclear-cytoplasmic distribution, reduced hyperactivated autophagy, and increased the percentage of differentiated (Desmin-positive) cells in vitro. All peptides rescued atrophy of indirect flight muscles in a Drosophila model of the disease, and partially rescued muscle function according to climbing and flight tests. Investigation of their mechanism of action supports that all four compounds can bind to CUG repeats with slightly different association constant, but binding did not strongly influence the secondary structure of the toxic RNA in contrast to abp1. Finally, molecular modeling suggests a detailed view of the interactions of peptide-CUG RNA complexes useful in the chemical optimization of compounds.


Asunto(s)
Distrofia Miotónica/metabolismo , Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Adolescente , Adulto , Animales , Células Cultivadas , Drosophila , Femenino , Fibroblastos , Humanos , Masculino , Unión Proteica
16.
Mol Ther Nucleic Acids ; 25: 652-667, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34589284

RESUMEN

Skeletal muscle symptoms strongly contribute to mortality of myotonic dystrophy type 1 (DM1) patients. DM1 is a neuromuscular genetic disease caused by CTG repeat expansions that, upon transcription, sequester the Muscleblind-like family of proteins and dysregulate alternative splicing of hundreds of genes. However, mis-splicing does not satisfactorily explain muscle atrophy and wasting, and several other contributing factors have been suggested, including hyperactivated autophagy leading to excessive catabolism. MicroRNA (miR)-7 has been demonstrated to be necessary and sufficient to repress the autophagy pathway in cell models of the disease, but the origin of its low levels in DM1 was unknown. We have found that the RNA-binding protein Musashi-2 (MSI2) is upregulated in patient-derived myoblasts and biopsy samples. Because it has been previously reported that MSI2 controls miR-7 biogenesis, we tested the hypothesis that excessive MSI2 was repressing miR-7 maturation. Using gene-silencing strategies (small interfering RNAs [siRNAs] and gapmers) and the small molecule MSI2-inhibitor Ro 08-2750, we demonstrate that reducing MSI2 levels or activity boosts miR-7 expression, represses excessive autophagy, and downregulates atrophy-related genes of the UPS system. We also detect a significant upregulation of MBNL1 upon MSI2 silencing. Taken together, we propose MSI2 as a new therapeutic target to treat muscle dysfunction in DM1.

17.
FASEB J ; 35(10): e21914, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34547132

RESUMEN

Limb-girdle muscular dystrophy D2 (LGMDD2) is an ultrarare autosomal dominant myopathy caused by mutation of the normal stop codon of the TNPO3 nuclear importin. The mutant protein carries a 15 amino acid C-terminal extension associated with pathogenicity. Here we report the first animal model of the disease by expressing the human mutant TNPO3 gene in Drosophila musculature or motor neurons and concomitantly silencing the endogenous expression of the fly protein ortholog. A similar genotype expressing wildtype TNPO3 served as a control. Phenotypes characterization revealed that mutant TNPO3 expression targeted at muscles or motor neurons caused LGMDD2-like phenotypes such as muscle degeneration and atrophy, and reduced locomotor ability. Notably, LGMDD2 mutation increase TNPO3 at the transcript and protein level in the Drosophila model Upregulated muscle autophagy observed in LGMDD2 patients was also confirmed in the fly model, in which the anti-autophagic drug chloroquine was able to rescue histologic and functional phenotypes. Overall, we provide a proof of concept of autophagy as a target to treat disease phenotypes and propose a neurogenic component to explain mutant TNPO3 pathogenicity in diseased muscles.


Asunto(s)
Autofagia/efectos de los fármacos , Cloroquina/farmacología , Cloroquina/uso terapéutico , Modelos Animales de Enfermedad , Drosophila melanogaster/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Distrofia Muscular de Cinturas/complicaciones , Animales , Animales Modificados Genéticamente , Autofagia/genética , Drosophila melanogaster/genética , Femenino , Humanos , Hormonas de Insectos , Locomoción , Masculino , Neuronas Motoras/metabolismo , Músculos/metabolismo , Atrofia Muscular/complicaciones , Atrofia Muscular/genética , Atrofia Muscular/patología , Distrofia Muscular de Cinturas/tratamiento farmacológico , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Fenotipo , Tasa de Supervivencia , beta Carioferinas/genética , beta Carioferinas/metabolismo
18.
Mol Ther Nucleic Acids ; 26: 174-191, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34513303

RESUMEN

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-derived myotubes. In HSALR, antagomiR-218 reached 40-60 pM 2 weeks after injection, rescued molecular and functional phenotypes in a dose- and time-dependent manner, and showed a good toxicity profile after a single subcutaneous administration. In muscle tissue, antagomiR rescued the normal subcellular distribution of Mbnl1 and did not alter the proportion of myonuclei containing CUG foci. In patient-derived cells, antagomiR-218 improved defective fusion and differentiation and rescued up to 34% of the gene expression alterations found in the transcriptome of patient cells. Importantly, miR-218 was found to be upregulated in DM1 muscle biopsies, pinpointing this microRNA (miRNA) as a relevant therapeutic target.

19.
Sci Rep ; 11(1): 15287, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315987

RESUMEN

Heart failure (HF) and the development of chronic kidney disease (CKD) have a direct association. Both can be cause and consequence of the other. Many factors are known, such as diabetes or hypertension, which can lead to the appearance and/or development of these two conditions. However, it is suspected that other factors, namely genetic ones, may explain the differences in the manifestation and progression of HF and CKD among patients. One candidate factor is Rph, a gene expressed in the nervous and excretory system in mammals and Drosophila, encoding a Rab small GTPase family effector protein implicated in vesicular trafficking. We found that Rph is expressed in the Drosophila heart, and the silencing of Rph gene expression in this organ had a strong impact in the organization of fibers and functional cardiac parameters. Specifically, we observed a significant increase in diastolic and systolic diameters of the heart tube, which is a phenotype that resembles dilated cardiomyopathy in humans. Importantly, we also show that silencing of Rabphilin (Rph) expression exclusively in the pericardial nephrocytes, which are part of the flies' excretory system, brings about a non-cell-autonomous effect on the Drosophila cardiac system. In summary, in this work, we demonstrate the importance of Rph in the fly cardiac system and how silencing Rph expression in nephrocytes affects the Drosophila cardiac system.


Asunto(s)
Cardiomiopatía Dilatada/genética , Proteínas de Drosophila/genética , Silenciador del Gen , Proteínas del Tejido Nervioso/genética , Animales
20.
Biochem Mol Biol Educ ; 49(5): 729-736, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160891

RESUMEN

Laboratory practical sessions are critical to scientific training in biology but usually fail to promote logical and hypothesis-driven reasoning and rely heavily on the teacher's instructions. This paper describes a 2-day laboratory practicum in which students prepare and analyze larval cuticle preparations of Drosophila segmentation gene mutant strains. Embryonic segmentation involves three major classes of genes according to their loss-of-function phenotypes: the establishment of broad regions by gap genes, the specification of the segments by the pair-rule genes, and the compartments within segments by the segment polarity genes. Students are asked to sort undefined segmentation mutants into gap, pair-rule, or segment polarity categories based on their knowledge of the Drosophila segmentation process and the microscopic anatomical traits they are capable of finding in the sample preparations. This technically simple practicum prompts students to pay attention to detailed observation to detect anatomic markers of intrasegmental compartments and thorax versus abdomen cuticle, and promote their logical reasoning in hypothesizing to which segmentation type a given mutant fits best.


Asunto(s)
Drosophila , Regulación del Desarrollo de la Expresión Génica , Animales , Drosophila/genética , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA