Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7379, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012173

RESUMEN

Changing environmental temperatures impact the physiological performance of fishes, and consequently their distributions. A mechanistic understanding of the linkages between experienced temperature and the physiological response expressed within complex natural environments is often lacking, hampering efforts to project impacts especially when future conditions exceed previous experience. In this study, we use natural chemical tracers to determine the individual experienced temperatures and expressed field metabolic rates of Atlantic bluefin tuna (Thunnus thynnus) during their first year of life. Our findings reveal that the tuna exhibit a preference for temperatures 2-4 °C lower than those that maximise field metabolic rates, thereby avoiding temperatures warm enough to limit metabolic performance. Based on current IPCC projections, our results indicate that historically-important spawning and nursery grounds for bluefin tuna will become thermally limiting due to warming within the next 50 years. However, limiting global warming to below 2 °C would preserve habitat conditions in the Mediterranean Sea for this species. Our approach, which is based on field observations, provides predictions of animal performance and behaviour that are not constrained by laboratory conditions, and can be extended to any marine teleost species for which otoliths are available.


Asunto(s)
Ecosistema , Atún , Animales , Atún/fisiología , Océano Atlántico , Calentamiento Global , Mar Mediterráneo
2.
Heliyon ; 8(11): e11757, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36451758

RESUMEN

Chemical fingerprints in otoliths are commonly used as natural habitat markers in fishes. Alternatively, the first dorsal fin spine can provide valuable chemical information and may be more suitable for studying (i) endangered fish species that cannot be sacrificed for their otoliths or (ii) fishes for which otoliths might not be available because of management or commercial reasons. Here, we studied multi-element chemistry of fin spine edges collected from Atlantic bluefin tuna (ABFT; Thunnus thynnus) (Linnaeus, 1758) to investigate the utility of the fin spine edge as a natural habitat marker. We determined stable isotopic δ18O and δ13C ratios, as well as concentrations of the tracer elements Mg, Mn, Li, Ba, and Sr, at the edge of ABFT fin spines, and then we used these measures to discriminate ABFT individuals among capture regions (i.e., the eastern Atlantic Ocean or Mediterranean Sea). Isotope ratios and tracer element concentrations, and especially a combined multi-element approach, were able to effectively discriminate individuals by capture region. The Mg, Mn, Li, and δ18O concentrations were the strongest variables driving this discrimination. Overall, our results demonstrate that chemical signatures are consistently retained in the ABFT fin spine edge and support the use of fin spine edges for discerning habitat use. The fin spine chemistry as a minimally invasive sampling method, combined with otolith chemistry, genetic markers, and tagging efforts can help us to reconstruct fish movements, providing a deeper understanding of the spatial population dynamics of this iconic fish species.

3.
Adv Mar Biol ; 88: 39-89, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34119046

RESUMEN

Skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tuna are the target species of tropical tuna fisheries in the Indian Ocean, with high commercial value in the international market. High fishing pressure over the past three decades has raised concerns about their sustainability. Understanding life history strategies and stock structure is essential to determine species resilience and how they might respond to exploitation. Here we provide a comprehensive review of available knowledge on the biology, ecology, and stock structure of tropical tuna species in the Indian Ocean. We describe the characteristics of Indian Ocean tropical tuna fisheries and synthesize skipjack, yellowfin, and bigeye tuna key life history attributes such as biogeography, trophic ecology, growth, and reproductive biology. In addition, we evaluate the available literature about their stock structure using different approaches such as analysis of fisheries data, genetic markers, otolith microchemistry and tagging, among others. Based on this review, we conclude that there is a clear lack of ocean basin-scale studies on skipjack, yellowfin and bigeye tuna life history, and that regional stock structure studies indicate that the panmictic population assumption of these stocks should be investigated further. Finally, we identify specific knowledge gaps that should be addressed with priority to ensure a sustainable and effective management of these species.


Asunto(s)
Explotaciones Pesqueras/estadística & datos numéricos , Atún , Animales , Peces , Océano Índico
4.
PLoS One ; 16(3): e0249327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33780495

RESUMEN

The chemical composition of otoliths (earbones) can provide valuable information about stock structure and connectivity patterns among marine fish. For that, chemical signatures must be sufficiently distinct to allow accurate classification of an unknown fish to their area of origin. Here we have examined the suitability of otolith microchemistry as a tool to better understand the spatial dynamics of skipjack tuna (Katsuwonus pelamis), a highly valuable commercial species for which uncertainties remain regarding its stock structure in the Indian Ocean. For this aim, we have compared the early life otolith chemical composition of young-of-the-year (<6 months) skipjack tuna captured from the three main nursery areas of the equatorial Indian Ocean (West, Central and East). Elemental (Li:Ca, Sr:Ca, Ba:Ca, Mg:Ca and Mn:Ca) and stable isotopic (δ13C, δ18O) signatures were used, from individuals captured in 2018 and 2019. Otolith Sr:Ca, Ba:Ca, Mg:Ca and δ18O significantly differed among fish from different nurseries, but, in general, the chemical signatures of the three nursery areas largely overlapped. Multivariate analyses of otolith chemical signatures revealed low geographic separation among Central and Eastern nurseries, achieving a maximum overall random forest cross validated classification success of 51%. Cohort effect on otolith trace element signatures was also detected, indicating that variations in chemical signatures associated with seasonal changes in oceanographic conditions must be well understood, particularly for species with several reproductive peaks throughout the year. Otolith microchemistry in conjunction with other techniques (e.g., genetics, particle tracking) should be further investigated to resolve skipjack stock structure, which will ultimately contribute to the sustainable management of this stock in the Indian Ocean.


Asunto(s)
Membrana Otolítica/química , Atún , Animales , Océano Índico , Oligoelementos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...