Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108817

RESUMEN

The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3ß inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.


Asunto(s)
Exosomas , Células Madre Pluripotentes , Humanos , Péptidos beta-Amiloides , Plexo Coroideo/fisiología , Glucógeno Sintasa Quinasa 3 beta , Organoides
3.
Bioact Mater ; 25: 732-747, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37056276

RESUMEN

Human mesenchymal stromal cells (hMSCs) are mechanically sensitive undergoing phenotypic alterations when subjected to shear stress, cell aggregation, and substrate changes encountered in 3D dynamic bioreactor cultures. However, little is known about how bioreactor microenvironment affects the secretion and cargo profiles of hMSC-derived extracellular vesicles (EVs) including the subset, "exosomes", which contain therapeutic proteins, nucleic acids, and lipids from the parent cells. In this study, bone marrow-derived hMSCs were expanded on 3D Synthemax II microcarriers in the PBS mini 0.1L Vertical-Wheel bioreactor system under variable shear stress levels at 25, 40, and 64 RPM (0.1-0.3 dyn/cm2). The bioreactor system promotes EV secretion from hMSCs by 2.5-fold and upregulates the expression of EV biogenesis markers and glycolysis genes compared to the static 2D culture. The microRNA cargo was also altered in the EVs from bioreactor culture including the upregulation of miR-10, 19a, 19b, 21, 132, and 377. EV protein cargo was characterized by proteomics analysis, showing upregulation of metabolic, autophagy and ROS-related proteins comparing with 2D cultured EVs. In addition, the scalability of the Vertical-Wheel bioreactor system was demonstrated in a 0.5L bioreactor, showing similar or better hMSC-EV secretion and cargo content compared to the 0.1L bioreactor. This study advances our understanding of bio-manufacturing of stem cell-derived EVs for applications in cell-free therapy towards treating neurological disorders such as ischemic stroke, Alzheimer's disease, and multiple sclerosis.

4.
Pharmaceutics ; 15(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36839877

RESUMEN

In cancer patients, chronic paclitaxel (PTX) treatment causes excruciating pain, limiting its use in cancer chemotherapy. The neuroprotective potential of synthetic cannabidiol (CBD) and CBD formulated in extracellular vesicles (CBD-EVs) isolated from human umbilical cord derived mesenchymal stem cells was investigated in C57BL/6J mice with PTX-induced neuropathic pain (PIPN). The particle size of EVs and CBD-EVs, surface roughness, nanomechanical properties, stability, and release studies were all investigated. To develop neuropathy in mice, PTX (8 mg/kg, i.p.) was administered every other day (four doses). In terms of decreasing mechanical and thermal hypersensitivity, CBD-EVs treatment was superior to EVs treatment or CBD treatment alone (p < 0.001). CBD and CBD-EVs significantly reduced mitochondrial dysfunction in dorsal root ganglions and spinal homogenates of PTX-treated animals by modulating the AMPK pathway (p < 0.001). Studies inhibiting the AMPK and 5HT1A receptors found that CBD did not influence the neurobehavioral or mitochondrial function of PIPN. Based on these results, we hypothesize that CBD and CBD-EVs mitigated PIPN by modulating AMPK and mitochondrial function.

5.
Biochimie ; 208: 19-30, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36535544

RESUMEN

The significant resistance to currently available chemotherapeutics makes treatment for TNBC a key clinical concern. Herein, we studied the anti-cancer potentials of synthetic cannabidiol (CBD) and Tetrahydrocannabivarin (THCV) when used alone or in combination with doxorubicin (DOX) against MDA-MB-231 resistant cells. Pre-treatment with CBD and THCV significantly increased the cytotoxicity of DOX in MDA-MB-231 2D and 3D cultures that were DOX-resistant. Transcriptomics and Proteomics studies revealed that CBD and THCV, by downregulating PD-L1, TGF-ß, sp1, NLRP3, P38-MAPK, and upregulating AMPK induced apoptosis leading to improved DOX's chemosensitivity against DOX resistant MDA-MB-231 tumors in BALB/c nude mice. CBD/THCV in combination with DOX significantly inhibited H3k4 methylation and H2K5 acetylation as demonstrated by western blotting and RT-PCR. Based on these findings, CBD and THCV appear to counteract histone modifications and their subsequent effects on DOX, resulting in chemo-sensitization against MDA-MB-231 resistant cancers.


Asunto(s)
Cannabidiol , Cannabinoides , Ratones , Animales , Humanos , Cannabidiol/farmacología , Ratones Desnudos , Xenoinjertos , Doxorrubicina/farmacología
6.
Pharm Res ; 40(4): 801-816, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36002615

RESUMEN

PURPOSE: There is a growing interest in extracellular vesicles (EVs) for ocular applications as therapeutics, biomarkers, and drug delivery vehicles. EVs secreted from mesenchymal stem cells (MSCs) have shown to provide therapeutic benefits in ocular conditions. However, very little is known about the properties of bioreactor cultured-3D human retinal organoids secreted EVs. This study provides a comprehensive morphological, nanomechanical, molecular, and proteomic characterization of retinal organoid EVs and compares it with human umbilical cord (hUC) MSCs. METHODS: The morphology and nanomechanical properties of retinal organoid EVs were assessed using Nanoparticle tracking analysis (NTA) and Atomic force microscopy (AFM). Gene expression analysis of exosome biogenesis of early and late retinal organoids were compared using qPCR. The protein profile of the EVs were analyzed with proteomic tools. RESULTS: NTA indicated the average size of EV as 100-250 nm. A high expression of exosome biogenesis genes was observed in late retinal organoids EVs. Immunoblot analysis showed highly expressed exosomal markers in late retinal organoids EVs compared to early retinal organoids EVs. Protein profiling of retinal organoid EVs displayed a higher differential expression of retinal function-related proteins and EV biogenesis proteins than hUCMSC EVs, implicating that the use of retinal organoid EVs may have a superior therapeutic effect on retinal disorders. CONCLUSION: This study provides supplementary knowledge on the properties of retinal organoid EVs and suggests their potential use in the diagnostic and therapeutic treatments for ocular diseases.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Proteómica , Vesículas Extracelulares/metabolismo , Retina , Organoides/metabolismo
7.
Cells ; 11(21)2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36359825

RESUMEN

Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Retina , Encéfalo , Bioingeniería
8.
Pharmaceutics ; 14(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35745729

RESUMEN

The epidermal growth factor receptor (EGFR) is highly expressed in many non-small cell lung cancers (NSCLC), necessitating the use of EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatments. Osimertinib (OSM), a third-generation TKI, is routinely used in clinics, but T790M mutations in exon 20 of the EGFR receptor lead to resistance against OSM, necessitating the development of more effective therapeutics. Telmisartan (TLM), OSM, and cell cycle and apoptosis regulatory protein 1 (CARP-1) functional mimetic treatments (CFM4.17) were evaluated in this study against experimental H1975 tumor xenografts to ascertain their anti-cancer effects. Briefly, tumor growth was studied in H1975 xenografts in athymic nude mice, gene and protein expressions were analyzed using next-generation RNA sequencing, proteomics, RT-PCR, and Western blotting. TLM pre-treatment significantly reduced the tumor burden when combined with CFM-4.17 nanoformulation and OSM combination (TLM_CFM-F_OSM) than their respective single treatments or combination of OSM and TLM with CFM 4.17. Data from RNA sequencing and proteomics revealed that TLM_CFM-F_OSM decreased the expression of Lamin B2, STAT3, SOD, NFKB, MMP-1, TGF beta, Sox-2, and PD-L1 proteins while increasing the expression of AMPK proteins, which was also confirmed by RT-PCR, proteomics, and Western blotting. According to our findings, the TLM_CFM-F_OSM combination has a superior anti-cancer effect in the treatment of NSCLC by affecting multiple resistant markers that regulate mitochondrial homeostasis, inflammation, oxidative stress, and apoptosis.

9.
Int Immunopharmacol ; 107: 108693, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35303507

RESUMEN

The purpose of this study was to evaluate if phytocannabinoids, synthetic cannabidiol (CBD), and tetrahydrocannabivarin (THCV), and their combination, could protect mice from Paclitaxel-induced peripheral neuropathy (PIPN). Six groups of C57BL/6J mice (n = 6) were used in this study. The mice were given paclitaxel (PTX) (8 mg/kg/day, i.p.) on days 1, 3, 5, and 7 to induce neuropathy. Mice were evaluated for behavioral parameters, and dorsal root ganglions (DRG) were collected from the animals and subjected to RNA sequencing and westernblot analysis at the end of the study. On cultured DRGs derived from adult male rats, immunocytochemistry and mitochondrial functional assays were also performed. When compared to individual treatments, the combination of CBD and THCV improved thermal and mechanical neurobehavioral symptoms in mice by twofold. Targets for CBD and THCV therapy were identified by KEGG (RNA sequencing). PTX reduced the expression of p-AMPK, SIRT1, NRF2, HO1, SOD2, and catalase while increasing the expression of PI3K, p-AKT, p-P38 MAP kinase, BAX, TGF-ß, NLRP3 inflammasome, and caspase 3 in DRG homogenates of mice. Combination therapy outperformed monotherapy in reversing these protein expressions. The addition of CBD and THCV to DRG primary cultures reduced mitochondrial superoxides while increasing mitochondrial membrane potentials. WAY100135 and rimonabant altered the neuroprotective effects of CBD and THCV respectively by blocking 5-HT1A and CB1 receptors in mice and DRG primary cultures. The entourage effect of CBD and THCV against PIPN appears to protect neurons in mice via 5HT1A and CB1 receptors respectively.


Asunto(s)
Cannabidiol , Cannabinoides , Neuralgia , Animales , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Cannabinoides/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Paclitaxel/efectos adversos , Ratas , Roedores
10.
Drug Deliv Transl Res ; 12(11): 2762-2777, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35217991

RESUMEN

To date, promising therapy for triple negative breast cancer (TNBC) remains a serious concern clinically because of poor prognosis, resistance, and recurrence. Herein, anti-cancer potential of synthetic cannabidiol (CBD; Purisys, GA; GMP grade) was explored either alone or as a chemosensitizer followed by post-treatment with doxorubicin (DOX) in TNBC (i.e., MDA-MB-231 and MDA-MB-468) cells. In comparison to 2D cultures, CBD showed greater IC50 values in 3D (LDP2 hydrogel based) cultures of MDA-MB-231 (6.26-fold higher) and MDA-MB-468 (10.22-fold higher) cells. Next-generation RNA sequencing revealed GADD45A, GADD45G, FASN, LOX, and integrin (i.e., -α5, -ß5) genes to be novelly altered by CBD in MDA-MB-231 cells. CIM-16 plate-based migration assay and western blotting disclosed that CBD induces anti-migratory effects in TNBC cells by decreasing fibronectin, vimentin, and integrins-α5, -ß5, and -ß1. Western blotting, RT-qPCR, and immunocytochemistry revealed that CBD inhibited autophagy (decreased Beclin1, and ATG-5, -7, and -16) of TNBC cells. CBD pre-treatment increased DOX sensitivity in TNBC cells. CBD pre-treatment accompanied by DOX treatment decreased LOX and integrin-α5, and increased caspase 9 protein respectively in MDA-MB-468 cells.


Asunto(s)
Cannabidiol , Neoplasias de la Mama Triple Negativas , Apoptosis , Autofagia , Beclina-1/metabolismo , Beclina-1/farmacología , Cannabidiol/farmacología , Caspasa 9/metabolismo , Caspasa 9/farmacología , Línea Celular Tumoral , Proliferación Celular , Doxorrubicina/farmacología , Fibronectinas , Humanos , Hidrogeles , Integrina alfa5/metabolismo , Integrina alfa5/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Vimentina/metabolismo , Vimentina/farmacología
11.
Anticancer Res ; 41(9): 4215-4228, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34475041

RESUMEN

BACKGROUND/AIM: Tyrosine kinase inhibitors (TKIs) are used for the treatment of both wild type and mutant non-small cell lung cancer (NSCLC); however, acquired resistance is a major clinical challenge. Herein, we aimed to investigate the effects of telmisartan (Tel), CFM 4.16 and sorafenib combination in rociletinib resistant NSCLC tumors. MATERIALS AND METHODS: 3D spheroid cultures and western blotting were used for evaluating cytotoxic effects and protein expression. An in vivo rociletinib resistant H1975 xenograft model of NSCLC was developed by subcutaneous injection of rociletinib resistant H1975 cells into nude mice. RESULTS: Tel, CFM 4.16 and sorafenib combination displayed superior anti-cancer effects in 3D spheroid cultures and a rociletinib resistant H1975 xenograft model of NSCLC by decreasing the protein expression of oncogenic and cancer stem cell markers (Nanog, Sox2 and Oct4). CONCLUSION: Tel facilitates effective penetration of CFM 4.16 and sorafenib in rociletinib resistant H1975 models of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Esferoides Celulares/citología , Compuestos de Espiro/administración & dosificación , Telmisartán/administración & dosificación , Tiadiazoles/administración & dosificación , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Sorafenib/farmacología , Sorafenib/uso terapéutico , Esferoides Celulares/efectos de los fármacos , Compuestos de Espiro/farmacología , Telmisartán/farmacología , Tiadiazoles/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Int J Pharm ; 607: 120943, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34324983

RESUMEN

Extracellular Vesicles (EVs) were isolated from human umbilical cord mesenchymal stem cells (hUCMSCs) and were further encapsulated with cannabidiol (CBD) through sonication method (CBD EVs). CBD EVs displayed an average particle size of 114.1 ± 1.02 nm, zeta potential of -30.26 ± 0.12 mV, entrapment efficiency of 92.3 ± 2.21% and stability for several months at 4 °C. CBD release from the EVs was observed as 50.74 ± 2.44% and 53.99 ± 1.4% at pH 6.8 and pH 7.4, respectively after 48 h. Our in-vitro studies demonstrated that CBD either alone or in EVs form significantly sensitized MDA-MB-231 cells to doxorubicin (DOX) (*P < 0.05). Flow cytometry and migration studies revealed that CBD EVs either alone or in combination with DOX induced G1 phase cell cycle arrest and decreased migration of MDA-MB-231 cells, respectively. CBD EVs and DOX combination significantly reduced tumor burden (***P < 0.001) in MDA-MB-231 xenograft tumor model. Western blotting and immunocytochemical analysis demonstrated that CBD EVs and DOX combination decreased the expression of proteins involved in inflammation, metastasis and increased the expression of proteins involved in apoptosis. CBD EVs and DOX combination will have profound clinical significance in not only decreasing the side effects but also increasing the therapeutic efficacy of DOX in TNBC.


Asunto(s)
Neoplasias de la Mama , Cannabidiol , Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina , Femenino , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
13.
Sci Rep ; 11(1): 372, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431915

RESUMEN

A series of stable and ready-to-use bioinks have been developed based on the xeno-free and tunable hydrogel (VitroGel) system. Cell laden scaffold fabrication with optimized polysaccharide-based inks demonstrated that Ink H4 and RGD modified Ink H4-RGD had excellent rheological properties. Both bioinks were printable with 25-40 kPa extrusion pressure, showed 90% cell viability, shear-thinning and rapid shear recovery properties making them feasible for extrusion bioprinting without UV curing or temperature adjustment. Ink H4-RGD showed printability between 20 and 37 °C and the scaffolds remained stable for 15 days at temperature of 37 °C. 3D printed non-small-cell lung cancer (NSCLC) patient derived xenograft cells (PDCs) showed rapid spheroid growth of size around 500 µm in diameter and tumor microenvironment formation within 7 days. IC50 values demonstrated higher resistance of 3D spheroids to docetaxel (DTX), doxorubicin (DOX) and erlotinib compared to 2D monolayers of NSCLC-PDX, wild type triple negative breast cancer (MDA-MB-231 WT) and lung adenocarcinoma (HCC-827) cells. Results of flow property, shape fidelity, scaffold stability and biocompatibility of H4-RGD suggest that this hydrogel could be considered for 3D cell bioprinting and also for in-vitro tumor microenvironment development for high throughput screening of various anti-cancer drugs.


Asunto(s)
Bioimpresión/métodos , Ensayos de Selección de Medicamentos Antitumorales , Hidrogeles/química , Neoplasias/patología , Andamios del Tejido/química , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales/instrumentación , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Tinta , Neoplasias Pulmonares/patología , Ensayo de Materiales , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Modelos Biológicos , Polisacáridos/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Microambiente Tumoral/fisiología
14.
Toxicol Appl Pharmacol ; 401: 115112, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540278

RESUMEN

Cancer stem cells (CSCs) accounts for recurrence and resistance to chemotherapy in various tumors. Efficacy of chemotherapeutic drugs is limited by tumor stromal barriers, which hinder their penetration into deep tumor sites. We have earlier shown telmisartan (Tel) pretreatment prior to Docetaxel (DTX) administration enhances anti-cancer effects in non-small cell lung cancer (NSCLC). Herein, we demonstrated for the first time the efficacy of Docetaxel liposomes (DTXPL) in combination with Tel in 3D cultures of H460 cells by using polysaccharide-based hydrogels (TheWell Biosciences) and also in xenograft model of DTX resistant H460 derived CD133+ lung tumors. DTXPL and Tel combination showed enhanced cytotoxicity in H460 WT 3D cultures by two folds. In H460 3D cultures, Tel pretreatment showed increased liposomal uptake. DTXPL and Tel combination treated tumors showed reduction in tumor volume (p < .001), increased apoptosis and downregulation of CSC markers (p < .01) in H460 WT and DTX resistant CD133+ xenograft models.


Asunto(s)
Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Docetaxel/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Células Madre Neoplásicas/efectos de los fármacos , Telmisartán/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Humanos , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...