Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398293

RESUMEN

Replication of genetic material involves the creation of characteristic termini. Determining these termini is important to refine our understanding of the mechanisms involved in maintaining the genomes of cellular organisms and viruses. Here we describe a computational approach combining direct and indirect readouts to detect termini from next-generation short-read sequencing. While a direct inference of termini can come from mapping the most prominent start positions of captured DNA fragments, this approach is insufficient in cases where the DNA termini are not captured, whether for biological or technical reasons. Thus, a complementary (indirect) approach to terminus detection can be applied, taking advantage of the imbalance in coverage between forward and reverse sequence reads near termini. A resulting metric ("strand bias") can be used to detect termini even where termini are naturally blocked from capture or ends are not captured during library preparation (e.g., in tagmentation-based protocols). Applying this analysis to datasets where known DNA termini are present, such as from linear double-stranded viral genomes, yielded distinct strand bias signals corresponding to these termini. To evaluate the potential to analyze a more complex situation, we applied the analysis to examine DNA termini present early after HIV infection in a cell culture model. We observed both the known termini expected based on standard models of HIV reverse transcription (the U5-right-end and U3-left-end termini) as well as a signal corresponding to a previously described additional initiation site for plus-strand synthesis (cPPT [central polypurine tract]). Interestingly, we also detected putative terminus signals at additional sites. The strongest of these are a set that share several characteristics with the previously characterized plus-strand initiation sites (the cPPT and 3' PPT [polypurine tract] sites): (i) an observed spike in directly captured cDNA ends, an indirect terminus signal evident in localized strand bias, (iii) a preference for location on the plus-strand, (iv) an upstream purine-rich motif, and (v) a decrease in terminus signal at late time points after infection. These characteristics are consistent in duplicate samples in two different genotypes (wild type and integrase-lacking HIV). The observation of distinct internal termini associated with multiple purine-rich regions raises a possibility that multiple internal initiations of plus-strand synthesis might contribute to HIV replication.

2.
mSphere ; 5(3)2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376697

RESUMEN

In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265-269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270-273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/veterinaria , Euterios/virología , Enfermedades Pulmonares/veterinaria , Metagenómica/métodos , Animales , Secuencia de Bases , Quirópteros/virología , Infecciones por Coronavirus/virología , Pulmón/virología , Enfermedades Pulmonares/virología , SARS-CoV-2 , Alineación de Secuencia
3.
Genome Res ; 29(6): 1009-1022, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31123080

RESUMEN

Caenorhabditis elegans was the first multicellular eukaryotic genome sequenced to apparent completion. Although this assembly employed a standard C. elegans strain (N2), it used sequence data from several laboratories, with DNA propagated in bacteria and yeast. Thus, the N2 assembly has many differences from any C. elegans available today. To provide a more accurate C. elegans genome, we performed long-read assembly of VC2010, a modern strain derived from N2. Our VC2010 assembly has 99.98% identity to N2 but with an additional 1.8 Mb including tandem repeat expansions and genome duplications. For 116 structural discrepancies between N2 and VC2010, 97 structures matching VC2010 (84%) were also found in two outgroup strains, implying deficiencies in N2. Over 98% of N2 genes encoded unchanged products in VC2010; moreover, we predicted ≥53 new genes in VC2010. The recompleted genome of C. elegans should be a valuable resource for genetics, genomics, and systems biology.


Asunto(s)
Caenorhabditis elegans/genética , Genoma de los Helmintos , Genómica , Animales , Proteínas de Caenorhabditis elegans/genética , Biología Computacional/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
4.
Dev Cell ; 48(6): 827-839.e9, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30799227

RESUMEN

The recent work of Besseling and Bringmann (2016) identified a molecular intervention for C. elegans in which premature segregation of maternal and paternal chromosomes in the fertilized oocyte can produce viable animals exhibiting a non-Mendelian inheritance pattern. Overexpression in embryos of a single protein regulating chromosome segregation (GPR-1) provides a germline derived clonally from a single parental gamete. We present a collection of strains and cytological assays to consistently generate and track non-Mendelian inheritance. These tools allow reproducible and high-frequency (>80%) production of non-Mendelian inheritance, the facile and simultaneous homozygosis for all nuclear chromosomes in a single generation, the precise exchange of nuclear and mitochondrial genomes between strains, and the assessments of non-canonical mitosis events. We show the utility of these strains by demonstrating a rapid assessment of cell lineage requirements (AB versus P1) for a set of genes (lin-2, lin-3, lin-12, and lin-31) with roles in C. elegans vulval development.


Asunto(s)
Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Patrón de Herencia/genética , Animales , Biomarcadores/metabolismo , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromosomas/genética , Cruzamientos Genéticos , Femenino , Fluorescencia , Masculino , Microtúbulos/metabolismo , Mosaicismo , Mutación/genética , Faringe/metabolismo , Fenotipo , Vulva/embriología , Vulva/metabolismo , Cigoto/metabolismo
5.
Genetics ; 210(1): 155-170, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986907

RESUMEN

Nutrient availability, growth rate, and cell size are closely linked. For example, in budding yeast, the rate of cell growth is proportional to nutrient availability, cell size is proportional to growth rate, and growth rate is proportional to cell size. Thus, cells grow slowly in poor nutrients and are nearly half the size of cells growing in rich nutrients. Moreover, large cells grow faster than small cells. A signaling network that surrounds TOR kinase complex 2 (TORC2) plays an important role in enforcing these proportional relationships. Cells that lack components of the TORC2 network fail to modulate their growth rate or size in response to changes in nutrient availability. Here, we show that budding yeast homologs of the Lkb1 tumor suppressor kinase are required for normal modulation of TORC2 signaling in response to changes in carbon source. Lkb1 kinases activate Snf1/AMPK to initiate transcription of genes required for utilization of poor carbon sources. However, Lkb1 influences TORC2 signaling via a novel pathway that is independent of Snf1/AMPK. Of the three Lkb1 homologs in budding yeast, Elm1 plays the most important role in modulating TORC2. Elm1 activates a pair of related kinases called Gin4 and Hsl1. Previous work found that loss of Gin4 and Hsl1 causes cells to undergo unrestrained growth during a prolonged mitotic arrest, which suggests that they play a role in linking cell cycle progression to cell growth. We found that Gin4 and Hsl1 also control the TORC2 network. In addition, Gin4 and Hsl1 are themselves influenced by signals from the TORC2 network, consistent with previous work showing that the TORC2 network constitutes a feedback loop. Together, the data suggest a model in which the TORC2 network sets growth rate in response to carbon source, while also relaying signals via Gin4 and Hsl1 that set the critical amount of growth required for cell cycle progression. This kind of close linkage between control of cell growth and size would suggest a simple mechanistic explanation for the proportional relationship between cell size and growth rate.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Aumento de la Célula , Proliferación Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transducción de Señal/genética
6.
RNA ; 21(11): 1980-92, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26385508

RESUMEN

The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity.


Asunto(s)
Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica/genética , MicroARNs/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Mutación/genética , Fenotipo
7.
Nucleic Acids Res ; 42(22): 13778-87, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25399416

RESUMEN

To study target sequence specificity, selectivity, and reaction kinetics of Streptococcus pyogenes Cas9 activity, we challenged libraries of random variant targets with purified Cas9::guide RNA complexes in vitro. Cleavage kinetics were nonlinear, with a burst of initial activity followed by slower sustained cleavage. Consistent with other recent analyses of Cas9 sequence specificity, we observe considerable (albeit incomplete) impairment of cleavage for targets mutated in the PAM sequence or in 'seed' sequences matching the proximal 8 bp of the guide. A second target region requiring close homology was located at the other end of the guide::target duplex (positions 13-18 relative to the PAM). Sequences flanking the guide+PAM region had measurable (albeit modest) effects on cleavage. In addition, the first-base Guanine constraint commonly imposed by gRNA expression systems has little effect on overall cleavage efficiency. Taken together, these studies provide an in vitro understanding of the complexities of Cas9-gRNA interaction and cleavage beyond the general paradigm of site determination based on the 'seed' sequence and PAM.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , División del ADN , Endodesoxirribonucleasas/metabolismo , ADN/química , Cinética , ARN/química , Homología de Secuencia de Ácido Nucleico , Streptococcus pyogenes/enzimología
8.
Genetics ; 198(3): 837-46, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25161212

RESUMEN

Facilitated by recent advances using CRISPR/Cas9, genome editing technologies now permit custom genetic modifications in a wide variety of organisms. Ideally, modified animals could be both efficiently made and easily identified with minimal initial screening and without introducing exogenous sequence at the locus of interest or marker mutations elsewhere. To this end, we describe a coconversion strategy, using CRISPR/Cas9 in which screening for a dominant phenotypic oligonucleotide-templated conversion event at one locus can be used to enrich for custom modifications at another unlinked locus. After the desired mutation is identified among the F1 progeny heterozygous for the dominant marker mutation, F2 animals that have lost the marker mutation are picked to obtain the desired mutation in an unmarked genetic background. We have developed such a coconversion strategy for Caenorhabditis elegans, using a number of dominant phenotypic markers. Examining the coconversion at a second (unselected) locus of interest in the marked F1 animals, we observed that 14-84% of screened animals showed homologous recombination. By reconstituting the unmarked background through segregation of the dominant marker mutation at each step, we show that custom modification events can be carried out recursively, enabling multiple mutant animals to be made. While our initial choice of a coconversion marker [rol-6(su1006)] was readily applicable in a single round of coconversion, the genetic properties of this locus were not optimal in that CRISPR-mediated deletion mutations at the unselected rol-6 locus can render a fraction of coconverted strains recalcitrant to further rounds of similar mutagenesis. An optimal marker in this sense would provide phenotypic distinctions between the desired mutant/+ class and alternative +/+, mutant/null, null/null, and null/+ genotypes. Reviewing dominant alleles from classical C. elegans genetics, we identified one mutation in dpy-10 and one mutation in sqt-1 that meet these criteria and demonstrate that these too can be used as effective conversion markers. Coconversion was observed using a variety of donor molecules at the second (unselected) locus, including oligonucleotides, PCR products, and plasmids. We note that the coconversion approach described here could be applied in any of the variety of systems where suitable coconversion markers can be identified from previous intensive genetic analyses of gain-of-function alleles.


Asunto(s)
Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/genética , Moldes Genéticos , Alelos , Animales , Secuencia de Bases , Cromosomas/genética , Cruzamientos Genéticos , Reparación del ADN por Unión de Extremidades/genética , Femenino , Conversión Génica , Sitios Genéticos/genética , Marcadores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Homocigoto , Masculino , Datos de Secuencia Molecular , Oligonucleótidos/genética , Oocitos/metabolismo , Fenotipo , Mutación Puntual/genética , Espermatozoides/metabolismo
9.
Cell Host Microbe ; 13(6): 691-700, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23768493

RESUMEN

Dengue is the most prevalent mosquito-borne viral disease in humans, and the lack of early prognostics, vaccines, and therapeutics contributes to immense disease burden. To identify patterns that could be used for sequence-based monitoring of the antibody response to dengue, we examined antibody heavy-chain gene rearrangements in longitudinal peripheral blood samples from 60 dengue patients. Comparing signatures between acute dengue, postrecovery, and healthy samples, we found increased expansion of B cell clones in acute dengue patients, with higher overall clonality in secondary infection. Additionally, we observed consistent antibody sequence features in acute dengue in the highly variable major antigen-binding determinant, complementarity-determining region 3 (CDR3), with specific CDR3 sequences highly enriched in acute samples compared to postrecovery, healthy, or non-dengue samples. Dengue thus provides a striking example of a human viral infection where convergent immune signatures can be identified in multiple individuals. Such signatures could facilitate surveillance of immunological memory in communities.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus del Dengue/inmunología , Dengue/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Regiones Determinantes de Complementariedad/inmunología , Humanos , Memoria Inmunológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...