Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 19(12): 2502-2515, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33082276

RESUMEN

Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Hematológicas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirimidinas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Genómica/métodos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/patología , Humanos , Estadificación de Neoplasias , Proteómica/métodos
2.
ACS Med Chem Lett ; 11(2): 101-107, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32071674

RESUMEN

Inhibitors of mutant isocitrate dehydrogenase (mIDH) 1 and 2 cancer-associated enzymes prevent the accumulation of the oncometabolite d-2-hydroxyglutarate (2-HG) and are under clinical investigation for the treatment of several cancers harboring an IDH mutation. Herein, we describe the discovery of vorasidenib (AG-881), a potent, oral, brain-penetrant dual inhibitor of both mIDH1 and mIDH2. X-ray cocrystal structures allowed us to characterize the compound binding site, leading to an understanding of the dual mutant inhibition. Furthermore, vorasidenib penetrates the brain of several preclinical species and inhibits 2-HG production in glioma tissue by >97% in an orthotopic glioma mouse model. Vorasidenib represents a novel dual mIDH1/2 inhibitor and is currently in clinical development for the treatment of low-grade mIDH glioma.

3.
ACS Med Chem Lett ; 9(4): 300-305, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29670690

RESUMEN

Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity.

4.
Cancer Discov ; 7(5): 478-493, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28193778

RESUMEN

Somatic gain-of-function mutations in isocitrate dehydrogenases (IDH) 1 and 2 are found in multiple hematologic and solid tumors, leading to accumulation of the oncometabolite (R)-2-hydroxyglutarate (2HG). 2HG competitively inhibits α-ketoglutarate-dependent dioxygenases, including histone demethylases and methylcytosine dioxygenases of the TET family, causing epigenetic dysregulation and a block in cellular differentiation. In vitro studies have provided proof of concept for mutant IDH inhibition as a therapeutic approach. We report the discovery and characterization of AG-221, an orally available, selective, potent inhibitor of the mutant IDH2 enzyme. AG-221 suppressed 2HG production and induced cellular differentiation in primary human IDH2 mutation-positive acute myeloid leukemia (AML) cells ex vivo and in xenograft mouse models. AG-221 also provided a statistically significant survival benefit in an aggressive IDH2R140Q-mutant AML xenograft mouse model. These findings supported initiation of the ongoing clinical trials of AG-221 in patients with IDH2 mutation-positive advanced hematologic malignancies.Significance: Mutations in IDH1/2 are identified in approximately 20% of patients with AML and contribute to leukemia via a block in hematopoietic cell differentiation. We have shown that the targeted inhibitor AG-221 suppresses the mutant IDH2 enzyme in multiple preclinical models and induces differentiation of malignant blasts, supporting its clinical development. Cancer Discov; 7(5); 478-93. ©2017 AACR.See related commentary by Thomas and Majeti, p. 459See related article by Shih et al., p. 494This article is highlighted in the In This Issue feature, p. 443.


Asunto(s)
Aminopiridinas/farmacología , Antineoplásicos/farmacología , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Leucemia Mieloide Aguda/genética , Triazinas/farmacología , Animales , Línea Celular Tumoral , Humanos , Isocitrato Deshidrogenasa/genética , Ratones , Mutación , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cell Rep ; 17(3): 876-890, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27732861

RESUMEN

Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.


Asunto(s)
Ácido Aspártico/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Humanos , ARN Interferente Pequeño/metabolismo
6.
J Inherit Metab Dis ; 39(6): 807-820, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27469509

RESUMEN

D-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions. We generated a D2HGA type II mouse model by introducing the Idh2R140Q mutation at the native chromosomal locus. Idh2R140Q mice displayed significantly elevated 2HG levels and recapitulated multiple defects seen in patients. AGI-026, a potent, selective inhibitor of the human IDH2R140Q-mutant enzyme, suppressed 2HG production, rescued cardiomyopathy, and provided a survival benefit in Idh2R140Q mice; treatment withdrawal resulted in deterioration of cardiac function. We observed differential expression of multiple genes and metabolites that are associated with cardiomyopathy, which were largely reversed by AGI-026. These findings demonstrate the potential therapeutic benefit of an IDH2R140Q inhibitor in patients with D2HGA type II.


Asunto(s)
Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Cardiomiopatías/tratamiento farmacológico , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Mutación/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Encefalopatías Metabólicas Innatas/genética , Modelos Animales de Enfermedad , Isocitrato Deshidrogenasa/genética , Ratones , Mutación/genética
7.
J Biol Chem ; 289(20): 13717-25, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24668804

RESUMEN

Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (-) isomer is over 400-fold less active (IC50 = 29 µm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 µm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered.


Asunto(s)
Acetamidas/farmacología , Bencimidazoles/farmacología , Fenómenos Biofísicos , Inhibidores Enzimáticos/farmacología , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/genética , Mutación , Acetamidas/metabolismo , Acetamidas/farmacocinética , Animales , Bencimidazoles/metabolismo , Bencimidazoles/farmacocinética , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Humanos , Isocitrato Deshidrogenasa/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacocinética , Bibliotecas de Moléculas Pequeñas/farmacología
8.
Science ; 340(6132): 622-6, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23558173

RESUMEN

A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hematopoyesis/efectos de los fármacos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/enzimología , Compuestos de Fenilurea/farmacología , Sulfonamidas/farmacología , Sitio Alostérico , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Eritropoyesis/efectos de los fármacos , Regulación Leucémica de la Expresión Génica , Glutaratos/metabolismo , Humanos , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/metabolismo , Leucemia Eritroblástica Aguda , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Compuestos de Fenilurea/química , Compuestos de Fenilurea/metabolismo , Mutación Puntual , Multimerización de Proteína , Estructura Secundaria de Proteína , Bibliotecas de Moléculas Pequeñas , Sulfonamidas/química , Sulfonamidas/metabolismo
9.
Biochemistry ; 48(49): 11622-9, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19899770

RESUMEN

Gemcitabine 5'-diphosphate (F(2)CDP) is a potent inhibitor of ribonucleotide reductases (RNRs), enzymes that convert nucleotides (NDPs) to deoxynucleotides and are essential for DNA replication and repair. The Escherichia coli RNR, an alpha2beta2 complex, when incubated with 1 equiv of F(2)CDP catalyzes the release of two fluorides and cytosine concomitant with enzyme inactivation. In the presence of reductant (thioredoxin/thioredoxin reductase/NADPH or DTT), the enzyme inactivation results from its covalent labeling of alpha with the sugar of F(2)CDP (one label/alpha2beta2). SDS-PAGE analysis of the inactivated RNR without boiling of the sample reveals that alpha migrates as an 87 and 110 kDa protein in a ratio of 0.6:0.4. When the reductant is omitted, RNR is inactivated by loss of the essential tyrosyl radical and formation of a new radical. Inactivation studies with C225S-alpha in the presence or absence of reductants, reveal it behaves like wt-RNR in the absence of reductant. Inactivated C225S-alpha migrates as an 87 kDa protein and is not covalently modified. C225 is one of the cysteines in RNR's active site that supplies reducing equivalents to make dNDPs. To identify the new radical formed, [1'-(2)H]-F(2)CDP was studied with wt- and C225S-RNR by 9 and 140 GHz EPR spectroscopy. These studies revealed that the new radical is a nucleotide derived with g values of g(x) 2.00738, g(y) 2.00592, and g(z) 2.00230 and with altered hyperfine interactions (apparent triplet collapsed to a doublet) relative to [1'-(1)H]-F(2)CDP. The EPR features are very similar to those we recently reported for the nucleotide radical generated with CDP and E441Q-RNR.


Asunto(s)
Citidina Difosfato/análogos & derivados , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Colesterol/fisiología , Citidina Difosfato/toxicidad , Inhibidores Enzimáticos/metabolismo , Oxidación-Reducción , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Porcinos
10.
J Am Chem Soc ; 131(1): 200-11, 2009 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19128178

RESUMEN

The Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleotides and requires a diferric-tyrosyl radical cofactor for catalysis. RNR is composed of a 1:1 complex of two homodimeric subunits: alpha and beta. Incubation of the E441Q-alpha mutant RNR with substrate CDP and allosteric effector TTP results in loss of the tyrosyl radical and formation of two new radicals on the 200 ms to min time scale. The first radical was previously established by stopped flow UV/vis spectroscopy and pulsed high field EPR spectroscopy to be a disulfide radical anion. The second radical was proposed to be a 4'-radical of a 3'-keto-2'-deoxycytidine 5'-diphosphate. To identify the structure of the nucleotide radical [1'-(2)H], [2'-(2)H], [4'-(2)H], [5'-(2)H], [U-(13)C, (15)N], [U-(15)N], and [5,6 -(2)H] CDP and [beta-(2)H] cysteine-alpha were synthesized and incubated with E441Q-alpha2beta2 and TTP. The nucleotide radical was examined by 9 GHz and 140 GHz pulsed EPR spectroscopy and 35 GHz ENDOR spectroscopy. Substitution of (2)H at C4' and C1' altered the observed hyperfine interactions of the nucleotide radical and established that the observed structure was not that predicted. DFT calculations (B3LYP/IGLO-III/B3LYP/TZVP) were carried out in an effort to recapitulate the spectroscopic observations and lead to a new structure consistent with all of the experimental data. The results indicate, unexpectedly, that the radical is a semidione nucleotide radical of cytidine 5'-diphosphate. The relationship of this radical to the disulfide radical anion is discussed.


Asunto(s)
Citidina Difosfato/química , Escherichia coli/enzimología , Ribonucleótido Reductasas/química , Nucleótidos de Timina/química , Citidina Difosfato/metabolismo , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Humanos , Modelos Moleculares , Nucleósido-Fosfato Quinasa/química , Nucleósido-Fosfato Quinasa/metabolismo , Teoría Cuántica , Ribonucleótido Reductasas/metabolismo , Nucleótidos de Timina/metabolismo
11.
J Am Chem Soc ; 127(21): 7729-38, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15913363

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides providing the monomeric precursors required for DNA replication and repair. The class I RNRs are composed of two homodimeric subunits: R1 and R2. R1 has the active site where nucleotide reduction occurs, and R2 contains the diiron tyrosyl radical (Y*) cofactor essential for radical initiation on R1. Mechanism-based inhibitors, such as 2'-azido-2'-deoxyuridine-5'-diphosphate (N(3)UDP), have provided much insight into the reduction mechanism. N(3)UDP is a stoichiometric inactivator that, upon interaction with RNR, results in loss of the Y* in R2 and formation of a nitrogen-centered radical (N*) covalently attached to C225 (R-S-N*-X) in the active site of R1. N(2) is lost prior to N* formation, and after its formation, stoichiometric amounts of 2-methylene-3-furanone, pyrophosphate, and uracil are also generated. On the basis of the hyperfine interactions associated with N*, it was proposed that N* is also covalently attached to the nucleotide through either the oxygen of the 3'-OH (R-S-N*-O-R') or the 3'-C (R-S-N*-C-OH). To distinguish between the proposed structures, the inactivation was carried out with 3'-[(17)O]-N(3)UDP and N* was examined by 9 and 140 GHz EPR spectroscopy. Broadening of the N* signal was detected and the spectrum simulated to obtain the [(17)O] hyperfine tensor. DFT calculations were employed to determine which structures are in best agreement with the simulated hyperfine tensor and our previous ESEEM data. The results are most consistent with the R-S-N*-C-OH structure and provide evidence for the trapping of a 3'-ketonucleotide in the reduction process.


Asunto(s)
Azidas/química , Azidas/farmacología , Nucleótidos de Desoxiuracil/química , Nucleótidos de Desoxiuracil/farmacología , Escherichia coli/enzimología , Nucleótidos/química , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/química , Espectroscopía de Resonancia por Spin del Electrón , Activación Enzimática , Modelos Moleculares , Nucleótidos/metabolismo , Teoría Cuántica , Ribonucleótido Reductasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...