Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-473268

RESUMEN

The Omicron variant of the SARS-CoV-2 virus was first detected in South Africa in November 2021. The analysis of the sequence data in the context of earlier variants suggested that it may show very different characteristics, including immune evasion and increased transmission. These assumptions were partially confirmed, and the reduction in protection in convalescent patients and vaccinated individuals have been confirmed. Here, we have evaluated the efficacy of antivirals against SARS-CoV-2 variants, Omicron, Delta, and the early 2020 isolate.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-436259

RESUMEN

SO_SCPLOWUMMARYC_SCPLOWThe COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identified acriflavine as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-014183

RESUMEN

The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the healthcare measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of previously developed by us HTCC compound (N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride), which may be used as potential inhibitor of currently circulating highly pathogenic coronaviruses - SARS-CoV-2 and MERS-CoV.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-999029

RESUMEN

SARS-CoV-2 emerged by the end of 2019 to rapidly spread in 2020. At present, it is of utmost importance to understand the virus biology and to rapidly assess the potential of existing drugs and develop new active compounds. While some animal models for such studies are under development, most of the research is carried out in the Vero E6 cells. Here, we propose fully differentiated human airway epithelium cultures as a model for studies on the SARS-CoV-2. Further, we also provide basic characteristics of the system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...