Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3212, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680864

RESUMEN

Formation of magnetic order alters the character of spin excitations, which then affects transport properties. We investigate the photoexcited ultrafast spin dynamics in different magnetic phases in Néel-type skyrmion host GaV4S8 with time-resolved magneto-optical Kerr effect experiments. The coherent spin precession, whose amplitude is enhanced in the skyrmion-lattice phase, shows a signature of phase coexistence across the magnetic phase transitions. The incoherent spin relaxation dynamics slows down by a factor of two in the skyrmion-lattice/cycloid phases, indicating significant decrease in thermal conductivity triggered by a small change of magnetic field. The slow heat diffusion in the skyrmion-lattice/cycloid phases is attributed to the stronger magnon scattering off the domain walls formed in abundance in the skyrmion-lattice/cycloid phase. These results highlight the impact of spatial spin structure on the ultrafast heat transport in spin systems, providing a useful insight for the step toward ultrafast photocontrol of the magnets with novel spin orders.

2.
Adv Mater ; 33(13): e2008004, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33644923

RESUMEN

The unique combination of organic and inorganic layers in 2D layered perovskites offers promise for the design of a variety of materials for mechatronics, flexoelectrics, energy conversion, and lighting. However, the potential tailoring of their properties through the organic building blocks is not yet well understood. Here, different classes of organoammonium molecules are exploited to engineer the optical emission and robustness of a new set of Ruddlesden-Popper metal-halide layered perovskites. It is shown that the type of molecule regulates the number of hydrogen bonds that it forms with the edge-sharing [PbBr6 ]4- octahedra layers, leading to strong differences in the material emission and tunability of the color coordinates, from deep-blue to pure-white. Also, the emission intensity strongly depends on the length of the molecules, thereby providing an additional parameter to optimize their emission efficiency. The combined experimental and computational study provides a detailed understanding of the impact of lattice distortions, compositional defects, and the anisotropic crystal structure on the emission of such layered materials. It is foreseen that this rational design can be extended to other types of organic linkers, providing a yet unexplored path to tailor the optical and mechanical properties of these materials and to unlock new functionalities.

3.
J Phys Chem Lett ; 12(1): 280-286, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33337162

RESUMEN

Halide double perovskites are an interesting alternative to Pb-containing counterparts as active materials in optoelectronic devices. Low-dimensional double perovskites are fabricated by introducing large organic cations, resulting in organic/inorganic architectures with one or more inorganic octahedra layers separated by organic cations. Here, we synthesized layered double perovskites based on 3D Cs2AgBiBr6, consisting of double (2L) or single (1L) inorganic octahedra layers, using ammonium cations of different sizes and chemical structures. Temperature-dependent Raman spectroscopy revealed phase transition signatures in both inorganic lattice and organic moieties by detecting variations in their vibrational modes. Changes in the conformational arrangement of the organic cations to an ordered state coincided with a phase transition in the 1L systems with the shortest ammonium moieties. Significant changes of photoluminescence intensity observed around the transition temperature suggest that optical properties may be affected by the octahedral tilts emerging at the phase transition.

4.
Nat Mater ; 20(3): 341-345, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33046858

RESUMEN

The Dzyaloshinskii-Moriya interaction (DMI) between two magnetic moments mi and mj is of the form [Formula: see text]. It originates from spin-orbit coupling, and is at the heart of fascinating phenomena involving non-collinear magnetism, such as magnetic topological defects (for example, skyrmions) as well as spin-orbit torques and magnetically driven ferroelectricity, that are of significant fundamental and technological interest. In sharp contrast, its electric counterpart, which is an electric DMI characterized by its [Formula: see text] strength and describing an interaction between two polar displacements ui and uj, has rarely been considered, despite the striking possibility that it could also generate new features associated with non-collinear patterns of electric dipoles. Here we report first-principles simulations combined with group theoretical symmetry analysis which not only demonstrate that electric DMI does exist and has a one-to-one correspondence with its magnetic analogue, but also reveals a physical source for it. These findings can be used to explain and/or design phenomena of possible technological importance in ferroelectrics and multiferroics.

5.
J Phys Chem Lett ; 11(6): 2127-2132, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32079398

RESUMEN

We present a computational study of the electronic structure and lattice dynamics of IrTe2 that sheds light on the debated mechanism of the temperature-induced phase transitions of this material. At ambient temperature, IrTe2 adopts a hexagonal crystal structure typical of metal chalcogenides. Upon cooling, some Ir-Ir distances shorten, thus inducing lattice modulations. We demonstrate that this is due to the formation of multicenter bonds involving both Ir and Te atoms. We show how the formation of these bonds is energetically favorable but lowers the vibrational entropy; therefore, they are destabilized by temperature. The obtained model is exploited to rationalize the effect of Se doping and other experimental results from the literature.

6.
Adv Mater ; 32(9): e1905132, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31967707

RESUMEN

Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high-speed electronics, on the other hand, usually demand operation frequencies in the gigahertz (GHz) regime, where the effect of dipolar oscillation is important. Herein, an unexpected giant GHz conductivity on the order of 103 S m-1 is observed in certain BiFeO3 DWs, which is about 100 000 times greater than the carrier-induced direct current (dc) conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the alternating current (ac) conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out-of-plane microwave fields and induce power dissipation, which is confirmed by the phase-field modeling. Since the contributions from mobile-carrier conduction and bound-charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano-devices for radio-frequency applications.

7.
Nano Lett ; 19(5): 3151-3160, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30920844

RESUMEN

Metal/Insulator/Metal nanocavities (MIMs) are highly versatile systems for nanometric light confinement and waveguiding, and their optical properties are mostly interpreted in terms of surface plasmon polaritons. Although classic electromagnetic theory accurately describes their behavior, it often lacks physical insight, leaving some fundamental aspects of light interaction with these structures unexplored. In this work, we elaborate a quantum mechanical description of the MIM cavity as a double barrier quantum well. We identify the square of the imaginary part κ of the refractive index ñ of the metal as the optical potential and find that MIM cavity resonances are suppressed if the ratio n/κ exceeds a certain limit, which shows that low n and high κ values are desired for strong and sharp cavity resonances. Interestingly, the spectral regions of cavity mode suppression correspond to the interband transitions of the metals, where the optical processes are intrinsically non-Hermitian. The quantum treatment allows to describe the tunnel effect for photons and reveals that the MIM cavity resonances can be excited by resonant tunneling via illumination through the metal, without the need of momentum matching techniques such as prisms or grating couplers. By combining this analysis with spectroscopic ellipsometry on experimental MIM structures and by developing a simple harmonic oscillator model of the MIM for the calculation of its effective permittivity, we show that the cavity eigenmodes coincide with low-loss zeros of the effective permittivity. Therefore, the MIM resonances correspond to epsilon-near-zero (ENZ) eigenmodes that can be excited via resonant tunneling. Our approach provides a toolbox for the engineering of ENZ resonances throughout the entire visible range, which we demonstrate experimentally and theoretically. In particular, we apply our quantum mechanical approach to asymmetric MIM superabsorbers and use it for configuring broadly tunable refractive index sensors. Our work elucidates the role of MIM cavities as photonic analogues to tunnel diodes and opens new perspectives for metamaterials with designed ENZ response.

8.
Adv Mater ; 31(1): e1805608, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30393907

RESUMEN

Halide perovskites show promise for high-efficiency solar energy conversion and light-emitting diode devices owing to their bandgap, which falls within the visible optical range. However, due to their rigidity, GPa pressures are necessary to control the complex interplay between their electronic and crystallographic structure. Layered perovskites are likely to be controlled using much lower pressures by exploiting the optical anisotropy of the embedded organic molecules in the structure. This work introduces layered perovskite microplatelets and demonstrates the extreme sensitivity of their emission to cyclic mechanical loading in the range of tens of MPa. A drastic change in their emission is observed in situ, from near-white to an enhanced blue color. This process is reversible, as is evident from a hysteresis loop in the photoluminescence (PL) intensity of the microplatelets. A combination of experimental analysis and computational modelling shows that such behavior cannot be attributed to changes in the crystallographic structure of the flakes. Instead, it suggests that, thanks to their structural anisotropy, microplate alignment and reorientation are responsible for the observed PL modulation. The possibility to tune the optical emission of layered perovskite crystals via low pressures makes them highly interesting as active materials in applications where stress sensing or light modulation is desired.

9.
J Phys Chem Lett ; 9(17): 4895-4900, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30085683

RESUMEN

Cation exchange (CE) reactions have emerged as a technologically important route, complementary to the colloidal synthesis, to produce nanostructures of different geometries and compositions for a variety of applications. Here it is demonstrated with first-principles simulations that an interstitial impurity cation in CdSe nanocrystals weakens nearby bonds and reduces the CE barrier in the prototypical exchange of Cd2+ ions by Ag+ ions. A Wannier function-based tight binding model is employed to quantify microscopic mechanisms that influence this behavior. To support our model, we also tested our findings in a CE experiment: both CdSe and interstitially Ag-doped CdSe nanocrystals (containing 4% of Ag+ ions per nanocrystal on average) were exposed to Pb2+ ions at room temperature and it was observed that the exchange reaction proceeds further in doped nanocrystals. The findings suggest doping as a possible route to promote CE reactions that hardly undergo exchange otherwise, for example, those in III-V semiconductor nanocrystals.

10.
Sci Adv ; 4(7): eaar3867, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30062122

RESUMEN

The observation and control of interweaving spin, charge, orbital, and structural degrees of freedom in materials on ultrafast time scales reveal exotic quantum phenomena and enable new active forms of nanotechnology. Bonding is the prime example of the relation between electronic and nuclear degrees of freedom. We report direct evidence illustrating that photoexcitation can be used for ultrafast control of the breaking and recovery of bonds in solids on unprecedented time scales, near the limit for nuclear motions. We describe experimental and theoretical studies of IrTe2 using femtosecond electron diffraction and density functional theory to investigate bonding instability. Ir-Ir dimerization shows an unexpected fast dissociation and recovery due to the filling of the antibonding dxy orbital. Bond length changes of 20% in IrTe2 are achieved by effectively addressing the bonds directly through this relaxation process. These results could pave the way to ultrafast switching between metastable structures by photoinduced manipulation of the relative degree of bonding in this manner.

11.
Sci Rep ; 8(1): 7818, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777121

RESUMEN

We study the absorption spectra of the yellow excitons in Cu2O in high magnetic fields using polarization-resolved optical absorption measurements with a high frequency resolution. We show that the symmetry of the yellow exciton results in unusual selection rules for the optical absorption of polarized light and that the mixing of ortho- and para- excitons in magnetic field is important. The calculation of the energies of the yellow exciton series in strong and weak magnetic field limits suggests that a broad n = 2 line is comprized by two closely overlapping lines, gives a good fit to experimental data and allows to interpret the complex structure of excitonic levels.

12.
Nat Commun ; 9(1): 505, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410426

RESUMEN

Cation exchange is a versatile tool to control the composition of nanocrystals, and recently deterministic patterning could be achieved by combining it with lithography techniques. Regarding single nanocrystal structures, such spatial control of cation exchange enables the design of heterostructures, which can be integrated in functional optoelectronic elements. In this work, we fabricate nanowire CdSe/Cu2Se heterojunctions by masking cation exchange via electron-beam irradiation, such that cation exchange proceeds only in the non-irradiated sections. Interestingly, the heterojunction interfaces are almost atomically sharp, and the adjacent CdSe and Cu2Se domains exhibit epitaxial relationships. We show that the cation exchange at the CdSe/Cu2Se interface is only possible if the displaced Cd2+ ions can radially out-diffuse to the solution phase. If this exit pathway is blocked, the cation exchange cannot occur. Our technique allows one to transform already contacted single nanowires, and the obtained heterojunction nanowires manifest a noticeable gain in conductance.

13.
Sci Adv ; 3(5): e1602371, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508057

RESUMEN

Domain walls (DWs) in ferroic materials, across which the order parameter abruptly changes its orientation, can host emergent properties that are absent in the bulk domains. Using a broadband (106 to 1010 Hz) scanning impedance microscope, we show that the electrical response of the interlocked antiphase boundaries and ferroelectric DWs in hexagonal rare-earth manganites (h-RMnO3) is dominated by the bound-charge oscillation rather than free-carrier conduction at the DWs. As a measure of the rate of energy dissipation, the effective conductivity of DWs on the (001) surfaces of h-RMnO3 at gigahertz frequencies is drastically higher than that at dc, whereas the effect is absent on surfaces with in-plane polarized domains. First-principles and model calculations indicate that the frequency range and selection rules are consistent with the periodic sliding of the DW around its equilibrium position. This acoustic wave-like mode, which is associated with the synchronized oscillation of local polarization and apical oxygen atoms, is localized perpendicular to the DW but free to propagate along the DW plane. Our results break the ground to understand structural DW dynamics and exploit new interfacial phenomena for novel devices.

14.
Phys Rev Lett ; 117(14): 147402, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27740819

RESUMEN

We combined high field optical spectroscopy and first principles calculations to analyze the electronic structure of Ni_{3}TeO_{6} across the 53 K and 9 T magnetic transitions, both of which are accompanied by large changes in electric polarization. The color properties are sensitive to magnetic order due to field-induced changes in the crystal field environment, with those around Ni1 and Ni2 most affected. These findings advance the understanding of magnetoelectric coupling in materials in which magnetic 3d centers coexist with nonmagnetic heavy chalcogenide cations.

15.
Nat Commun ; 5: 3201, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24469350

RESUMEN

The manipulation of magnetic ordering with applied electric fields is of pressing interest for new magnetoelectric devices and information storage applications. Recently, such magnetoelectric control was realized in multiferroics. However, their magnetoelectric switching is often accompanied by significant hysteresis, resulting from a large barrier, separating different ferroic states. Hysteresis prevents robust switching, unless the applied field overcomes a certain value (coercive field). Here we address the role of a switching barrier on magnetoelectric control, and identify a material, collinear antiferromagnetic and pyroelectric Ni3TeO6, in which magnetoelectric switching occurs without hysteresis. The barrier between two magnetic states in the vicinity of a spin-flop transition is almost flat, and thus small changes in external electric/magnetic fields allow to switch the ferroic state through an intermediate state in a continuous manner, resulting in a colossal magnetoelectric response. This colossal magnetoelectric effect resembles the large piezoelectric effect at the morphotropic phase boundary in ferroelectrics.

16.
Nat Mater ; 13(1): 42-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162883

RESUMEN

Topological defects in ordered states with spontaneously broken symmetry often have unusual physical properties, such as fractional electric charge or a quantized magnetic field flux, originating from their non-trivial topology. Coupled topological defects in systems with several coexisting orders give rise to unconventional functionalities, such as the electric-field control of magnetization in multiferroics resulting from the coupling between the ferroelectric and ferromagnetic domain walls. Hexagonal manganites provide an extra degree of freedom: in these materials, both ferroelectricity and magnetism are coupled to an additional, non-ferroelectric structural order parameter. Here we present a theoretical study of topological defects in hexagonal manganites based on Landau theory with parameters determined from first-principles calculations. We explain the observed flip of electric polarization at the boundaries of structural domains, the origin of the observed discrete vortices, and the clamping between ferroelectric and antiferromagnetic domain walls. We show that structural vortices induce magnetic ones and that, consistent with a recent experimental report, ferroelectric domain walls can carry a magnetic moment.

17.
Nat Mater ; 11(8): 694-9, 2012 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-22728320

RESUMEN

The random fluctuations of spins give rise to many interesting physical phenomena, such as the 'order-from-disorder' arising in frustrated magnets and unconventional Cooper pairing in magnetic superconductors. Here we show that the exchange of spin waves between extended topological defects, such as domain walls, can result in novel magnetic states. We report the discovery of an unusual incommensurate phase in the orthoferrite TbFeO(3) using neutron diffraction under an applied magnetic field. The magnetic modulation has a very long period of 340 Å at 3 K and exhibits an anomalously large number of higher-order harmonics. These domain walls are formed by Ising-like Tb spins. They interact by exchanging magnons propagating through the Fe magnetic sublattice. The resulting force between the domain walls has a rather long range that determines the period of the incommensurate state and is analogous to the pion-mediated Yukawa interaction between protons and neutrons in nuclei.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...