Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
MethodsX ; 11: 102319, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37637292

RESUMEN

This method article describes the fabrication of graphene-epoxy nanocomposites using two different solvents, dimethylformamide (DMF) and acetone, and validates the resulting thermal conductivity improvements. The study compared the two solvents at a filler composition of 7 wt% and found that DMF resulted in more uniform dispersion of graphene nanoparticles in the epoxy matrix, leading to a 44% improvement in thermal conductivity compared to acetone. Laser scanning confocal microscopy (LSCM) imaging showed that DMF-based composites had more evenly dispersed graphene nanoplatelets than acetone-based composites, which exhibited larger graphene agglomerations. Effective medium theory calculations showed that DMF led to almost 35% lower interface thermal resistance between graphene and epoxy compared to acetone. The validated fabrication method and findings provide new possibilities for developing high thermal conductivity graphene-epoxy nanocomposites for various thermal management applications.•This article describes methods for fabricating graphene-epoxy composites using acetone and DMF as solvents, and validates that DMF is better for achieving higher thermal conductivity in the composite.

2.
MethodsX ; 9: 101898, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36411803

RESUMEN

The patterned dielectric back contact (PDBC) structure can be used to form a point-contact architecture that features a dielectric spacer with spatially distributed, reduced-area metal point contacts between the semiconductor back not recognized contact layer and the metal back contact. In this structure, the dielectric-metal region provides higher reflectance and is electrically insulating. Reduced-area metal point contacts provide electrical conduction for the back contact but typically have lower reflectance. The fabrication methods discussed in this article were developed for thermophotovoltaic cells, but they apply to any III-V optoelectronic device requiring the use of a conductive and highly reflective back contact. Patterned dielectric back contacts may be used for enhanced sub-bandgap reflectance, for enhanced photon recycling near the bandgap energy, or both depending on the optoelectronic application. The following fabrication methods are discussed in the article•PDBC fabrication procedures for spin-on dielectrics and commonly evaporated dielectrics to form the spacer layer.•Methods to selectively etch a parasitically absorbing back contact layer using metal point contacts as an etch mask.•Methods incorporating a dielectric etch through different process techniques such as reactive ion and wet etching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA