Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Funct Integr Genomics ; 22(4): 1-32, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35416560

RESUMEN

Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.


Asunto(s)
Oligoquetos , Animales , Perfilación de la Expresión Génica , Oligoquetos/genética , Oligoquetos/metabolismo
2.
Curr Genomics ; 23(2): 118-125, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36778974

RESUMEN

Background: Earthworms are annelids. They play a major role in agriculture and soil fertility. Vermicompost is the best organic manure for plant crops. Eudrilus eugeniae is an earthworm well suited for efficient vermicompost production. The worm is also used to study the cell and molecular biology of regeneration, molecular toxicology, developmental biology, etc., because of its abilities like high growth rate, rapid reproduction, tolerability toward wide temperature range, and less cost of maintenance. Objective: The whole genome has been revealed only for Eisenia andrei and Eisenia fetida. Methods: In the present work, we sequenced the genome of E. eugeniae using the Illumina platform and generated 160,684,383 paired-end reads. Results: The reads were assembled into a draft genome of size 488 Mb with 743,870 contigs and successfully annotated 24,599 genes. Further, 208 stem cell-specific genes and 3,432 non-coding genes were identified. Conclusion: The sequence and annotation details were hosted in a web application available at https://sudhakar-sivasubramaniam-labs.shinyapps.io/eudrilus_genome/.

3.
Mol Biol Rep ; 48(1): 259-283, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33306150

RESUMEN

The oligochaete earthworm, Eudrilus eugeniae is capable of regenerating both anterior and posterior segments. The present study focuses on the transcriptome analysis of earthworm E. eugeniae to identify and functionally annotate the key genes supporting the anterior blastema formation and regulating the anterior regeneration of the worm. The Illumina sequencing generated a total of 91,593,182 raw reads which were assembled into 105,193 contigs using CLC genomics workbench. In total, 40,946 contigs were annotated against the NCBI nr and SwissProt database and among them, 15,702 contigs were assigned to 14,575 GO terms. Besides a total of 9389 contigs were mapped to 416 KEGG biological pathways. The RNA-Seq comparison study identified 10,868 differentially expressed genes (DEGs) and of them, 3986 genes were significantly upregulated in the anterior regenerated blastema tissue samples of the worm. The GO enrichment analysis showed angiogenesis and unfolded protein binding as the top enriched functions and the pathway enrichment analysis denoted TCA cycle as the most significantly enriched pathway associated with the upregulated gene dataset of the worm. The identified DEGs and their function and pathway information can be effectively utilized further to interpret the key cellular, genetic and molecular events associated with the regeneration of the worm.


Asunto(s)
Oligoquetos/genética , Regeneración/genética , Transcriptoma/genética , Animales , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Oligoquetos/crecimiento & desarrollo , Regeneración/fisiología , Secuenciación del Exoma
4.
Artículo en Inglés | MEDLINE | ID: mdl-30533722

RESUMEN

The Escherichia coli phage CMSTMSU was isolated from shrimp farm effluent water in Ramanathapuram, India. The phage exhibited lytic activity against both E. coli and the fish pathogen Pseudomonas aeruginosa. Here we report the draft genome sequence, assembly, and annotation of the isolated CMSTMSU phage. This genome resource can be used to utilize the phage as a crucial biocontrol agent in the fish aquaculture sector.

5.
Data Brief ; 20: 525-534, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30191166

RESUMEN

The present article reports the complete draft genome annotation of earthworm Eisenia fetida, obtained from the manuscript entitled "Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm E. fetida" (Zwarycz et al., 2015) and provides the data on the repetitive elements, protein coding genes and noncoding RNAs present in the genome dataset of the species. The E. fetida protein coding genes were predicted from AUGUSTUS gene prediction and subsequently annotated based on their sequence similarity, Gene Ontology (GO) functional terms, InterPro domains, Clusters of Orthologous Groups (COGs) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways information. The genome wide comparison of orthologous clusters and phylogenomic analysis of the core genes were performed to understand the events of genome evolution and genomic diversity between E. fetida and its related metazoans. In addition, the genome dataset was screened to identify the crucial stem cell markers, regeneration specific genes and immune-related genes and their functionally enriched GO terms were predicted from Fisher׳s enrichment analysis. The E. fetida genome annotation data containing the GFF (general feature format) annotation file, predicted coding gene sequences and translated protein sequences were deposited to the figshare repository under the DOI: https://doi.org/10.6084/m9.figshare.6142322.v1.

6.
Data Brief ; 17: 15-23, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29876371

RESUMEN

Bacillus species 062011 msu is a harmful pathogenic strain responsible for causing abscessation in sheep and goat population studied by Mariappan et al. (2012) [1]. The organism specifically targets the female sheep and goat population and results in the reduction of milk and meat production. In the present study, we have performed the whole genome sequencing of the pathogenic isolate using the Ion Torrent sequencing platform and generated 458,944 raw reads with an average length of 198.2 bp. The genome sequence was assembled, annotated and analysed for the genetic islands, metabolic pathways, orthologous groups, virulence factors and antibiotic resistance genes associated with the pathogen. Simultaneously the 16S rRNA sequencing study and genome sequence comparison data confirmed that the strain belongs to the species Bacillus cereus and exhibits 99% sequence homo;logy with the genomes of B. cereus ATCC 10987 and B. cereus FRI-35. Hence, we have renamed the organism as Bacillus cereus 062011msu. The Whole Genome Shotgun (WGS) project has been deposited at DDBJ/ENA/GenBank under the accession NTMF00000000 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404036(SAMN07629099)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...