Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37233547

RESUMEN

Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability-selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare TFN membranes. Incorporating the nanomaterial onto the TFN-2 membrane resulted in a decrease in the water contact angle and suppression of the membrane surface roughness. The pure water permeability of 6.40 LMH bar-1 at the optimal loading ratio of 0.25 wt.% obtained was higher than the TFN-0 (4.20 LMH bar-1). The optimal TFN-2 demonstrated a high rejection of small-sized organics (>95% rejection for 2,4-dichlorophenol over five cycles) and salts-Na2SO4 (≈95%) > MgCl2 (≈88%) > NaCl (86%) through size sieving and Donnan exclusion mechanisms. Furthermore, the flux recovery ratio for TFN-2 increased from 78.9 to 94.2% when challenged with a model protein foulant (bovine serum albumin), indicating improved anti-fouling abilities. Overall, these findings provided a concrete step forward in fabricating TFN membranes that are highly suitable for wastewater treatment and desalination applications.

2.
Int J Biol Macromol ; 238: 124340, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37028633

RESUMEN

Bioactive compounds can be protected from degradation through encapsulation, increasing their bioavailability and shelf life. Spray drying is an advanced encapsulation technique mainly used for the processing of food-based bioactives. In this study, Box-Behnken design (BBD)-based response surface methodology (RSM) was used to study the effects of combined polysaccharide carrier agents and other spray drying parameters on encapsulating date fruit sugars obtained from a supercritical assisted aqueous extraction. The spray drying parameters were set at various levels: Air inlet temperature (150-170 °C), feed flow rate (3-5 mL/min), and carrier agent concentration (30-50 %). Under the optimized conditions (inlet temperature of 170 °C, the feed flow rate of 3 mL/min, and carrier agent concentration of 44 %), a maximum sugar powder yield of 38.62 % with 3.5 % moisture, 18.2 % hygroscopicity and 91.3 % solubility was obtained. The tapped density and particle density of the dried date sugar were estimated as 0.575 g cm-3 and 1.81 g cm-3, respectively, showing its potential for easy storage. In addition, scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis revealed better microstructural stability of the fruit sugar product, which is essential for commercial applications. Thus, the hybrid carrier agent system (maltodextrin and gum arabic) can be considered a potential carrier agent for producing stable date sugar powder with longer shelf-life and desirable characteristics in the food industry.


Asunto(s)
Goma Arábiga , Phoeniceae , Frutas , Goma Arábiga/química , Extractos Vegetales , Polisacáridos/química , Polvos/química , Azúcares
3.
Ultrason Sonochem ; 88: 106107, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35926278

RESUMEN

Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.


Asunto(s)
Phoeniceae , Carbohidratos/análisis , Frutas/química , Glucosa/análisis , Phoeniceae/química , Polvos/análisis , Azúcares/análisis
4.
Environ Res ; 204(Pt D): 112390, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34838760

RESUMEN

In recent years, bimetallic oxide nanoparticles have garnered significant attention owing to their salient advantages over monometallic nanoparticles. In this study, Fe2O3-Mn2O3 nanoparticles were synthesized and used as nanomodifiers for polyethersulfone (PES) ultrafiltration membranes. A NIPS was used to fabricate asymmetric membranes. The effect of nanoparticle concentration (0-1 wt.%) on the morphology, roughness, wettability, porosity, permeability, and protein filtration performance of the membranes was investigated. The membrane containing 0.25 wt% nanoparticles exhibited the lowest water contact angle (67°) and surface roughness (10.4 ± 2.8 nm) compared to the other membranes. Moreover, this membrane exhibited the highest porosity (74%) and the highest pure water flux (398 L/m2 h), which was 16% and 1.9 times higher than that of the pristine PES membrane. The modified PES membranes showed an improved antifouling ability, especially against irreversible fouling. Bovine serum albumin protein-based dynamic five-cycle filtration tests showed a maximum flux recovery ratio of 77% (cycle-1), 67% (cycle-2), and 65.8% (cycle-5) for the PES membrane containing 0.25 wt% nanoparticles. Overall, the biphasic Fe2O3-Mn2O3 nanoparticles were found to be an effective nanomodifier for improving the permeability and antifouling ability of PES membranes in protein separation and water treatment applications.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Óxidos , Permeabilidad , Polímeros , Sulfonas
5.
J Environ Manage ; 293: 112925, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34289593

RESUMEN

The development of membrane technology has proved vital in providing a sustainable and affordable supply of clean water to address the ever-increasing demand. Though liquid separation applications have been still dominated by polymeric membranes, porous ceramic membranes have gained a commercial foothold in microfiltration (MF) and ultrafiltration (UF) applications due to their hydrophilic nature, lower fouling, ease of cleaning, reliable performance, robust performance with harsh feeds, relative insensitivity to temperature and pH, and stable long-term flux. The enrichment of research and development on porous ceramic membranes extends its focus into advanced membrane separation technologies. The latest emerging nanofiltration (NF) and membrane distillation (MD) applications have witnessed special interests in constructing porous membrane with hydrophilic/functional/hydrophobic properties. However, NF and MD are relatively new, and many shortcomings must be addressed to compete with their polymeric counterparts. For the last three years (2018-2020), state-of-the-art literature on porous ceramic membranes has been collected and critically reviewed. This review highlights the efficiency (permeability, selectivity, and antifouling) of hydrophilic porous ceramic membranes in a wide variety of wastewater treatment applications and hydrophobic porous ceramic membranes in membrane distillation-based desalination applications. A significant focus on pores characteristics, pore sieving phenomenon, nano functionalization, and synergic effect on fouling, the hydrophilic porous ceramic membrane has been discussed. In another part of this review, the role of surface hydrophobicity, water contact angle, liquid entry pressure (LEP), thermal properties, surface micro-roughness, etc., has been discussed for different types of hydrophobic porous ceramic membranes -(a) metal-based, (b) silica-based, (c) other ceramics. Also, this review highlights the potential benefits, drawbacks, and limitations of the porous membrane in applications. Moreover, the prospects are emphasized to overcome the challenges in the field.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Cerámica , Porosidad , Ultrafiltración
6.
Chemosphere ; 271: 129525, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33445028

RESUMEN

Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.


Asunto(s)
Dióxido de Carbono , Cromatografía con Fluido Supercrítico , Fitoquímicos , Plantas , Solventes
7.
J Environ Sci (China) ; 82: 57-69, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31133270

RESUMEN

To improve the interfacial affinity and antifouling properties of polyphenylsulfone (PPSU) membrane, nano CuO/g-C3N4 (g-CN) sheets were synthesized via facile calcination route as one pot synthesis method. The uniformly assembled nanohybrid fillers, CuO on g-CN sheets were confirmed by using XRD, TEM, EDX and FTIR analysis. The non-solvent induced phase inversion technique was used to fabricate the nanohybrid ultrafiltration (UF) membranes by doping different concentration (0.5-1 wt.%) of nano CuO/g-C3N4 (g-CN) sheets within the PPSU matrix. The results of contact angle, atomic force microscopy, energy-dispersive X-ray spectroscopy reveal that surface structure and physico-chemical properties of nanohybrid membrane plays lead role in solute interaction and rejection compared to bare membrane, M0. Furthermore, the interfacial affinity of membrane was explored in detail via surface free energy, spreading coefficient, wetting tension and reversible work of adhesion analysis. Nanohybrid UF membrane, with 0.5% of the filler (M1) displayed remarkable permeation flux of 202, 131 L/m2/hr for pure water and protein solution, respectively while maintaining a high protein rejection (96%). Moreover, the exceptional dispersion of the nanosheets in the polymer matrix enhanced FRR (79%) and decreased the overall resistance of M1 compared to the pristine membrane (M0). Overall results suggest that the incorporation of nano sheets is a facile modification technique which improves the comprehensive membrane performance and holds a great potential to be further explored for water treatment.


Asunto(s)
Ultrafiltración/métodos , Purificación del Agua/métodos , Cobre/química , Grafito/química , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Nanocompuestos/química , Nitrilos/química , Polímeros/química
8.
RSC Adv ; 9(71): 41462-41474, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35541587

RESUMEN

In this research work, novel perfluorooctanoic acid-modified melamine (PFOM) was synthesized as a hydrophobic filler using a facile one-pot synthesis. PFOM incorporating polyvinylidene fluoride (PVDF) solution was cast on a cellulose sheet to prepare a dual-layered membrane employing the phase-inversion technique for direct contact membrane distillation (DCMD) application. The influence of PFOM to tailor the dual-layered membrane performance was then investigated. The long perfluoro chain in PFOM hydrophobic fillers increased the surface roughness of the membranes due to its random overlapping with PVDF backbone, and these membranes exhibited a higher water contact angle value. The increase in pore size and membrane porosity did not significantly influence the liquid entry pressure of water (LEPw). The microporous membranes displayed good mechanical strength for use in the test setup. Pure water permeation was the highest (6.9 kg m-2 h-1) for membrane (M1) with 1 wt% of PFOM when tested with a simulated sea-water solution (3.5% w/v NaCl) in the direct contact distillation mode. These membranes also achieved the theoretical salt-rejection of 99.9%, thus confirming the potential of these membranes to be investigated for large scale membrane distillation (MD) applications like desalination of seawater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...