Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 9(7)2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31330782

RESUMEN

Coronary heart disease (CHD) is the leading cause of death in the Unites States and globally. The administration of growth factors to preserve cardiac function after myocardial infarction (MI) is currently being explored. Basic fibroblast growth factor (bFGF), a potent angiogenic factor has poor clinical efficacy due to its short biological half-life and low plasma stability. The goal of this study was to develop bFGF-loaded polycaprolactone (PCL) microspheres for sustained release of bFGF and to evaluate its angiogenic potential. The bFGF-PCL microspheres (bFGF-PCL-MS) were fabricated using the emulsion solvent-evaporation method and found to have spherical morphology with a mean size of 4.21 ± 1.28 µm. In vitro bFGF release studies showed a controlled release for up to 30 days. Treatment of HUVECs with bFGF-PCL-MS in vitro enhanced their cell proliferation and migration properties when compared to the untreated control group. Treatment of HUVECs with release media from bFGF-PCL-MS also significantly increased expression of angiogenic genes (bFGF and VEGFA) as compared to untreated cells. The in vivo angiogenic potential of these bFGF-PCL-MS was further confirmed in rats using a Matrigel plug assay with subsequent immunohistochemical staining showing increased expression of angiogenic markers. Overall, bFGF-PCL-MS could serve as a potential angiogenic agent to promote cell survival and angiogenesis following an acute myocardial infarction.

2.
Life Sci ; 229: 233-250, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31103607

RESUMEN

Cardiovascular disease (CVD) is among the leading causes of mortality worldwide. The shortage of donor hearts to treat end-stage heart failure patients is a critical problem. An average of 3500 heart transplant surgeries are performed globally, half of these transplants are performed in the US alone. Stem cell therapy is growing rapidly as an alternative strategy to repair or replace the damaged heart tissue after a myocardial infarction (MI). Nevertheless, the relatively poor survival of the stem cells in the ischemic heart is a major challenge to the therapeutic efficacy of stem-cell transplantation. Recent advancements in tissue engineering offer novel biomaterials and innovative technologies to improve upon the survival of stem cells as well as to repair the damaged heart tissue following a myocardial infarction (MI). However, there are several limitations in tissue engineering technologies to develop a fully functional, beating cardiac tissue. Therefore, the main goal of this review article is to address the current advancements and barriers in cardiac tissue engineering to augment the survival and retention of stem cells in the ischemic heart.


Asunto(s)
Cardiopatías/terapia , Trasplante de Células Madre Mesenquimatosas , Miocardio/citología , Células Madre/citología , Ingeniería de Tejidos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA