Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 636, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34474664

RESUMEN

BACKGROUND: Association mapping studies of quantitative trait loci (QTL) for canine hip dysplasia (CHD) can contribute to the understanding of the genetic background of this common and debilitating disease and might contribute to its genetic improvement. The power of association studies for CHD is limited by relatively small sample numbers for CHD records within countries, suggesting potential benefits of joining data across countries. However, this is complicated due to the use of different scoring systems across countries. In this study, we incorporated routinely assessed CHD records and genotype data of German Shepherd dogs from two countries (UK and Sweden) to perform genome-wide association studies (GWAS) within populations using different variations of CHD phenotypes. As phenotypes, dogs were either classified into cases and controls based on the Fédération Cynologique Internationale (FCI) five-level grading of the worst hip or the FCI grade was treated as an ordinal trait. In a subsequent meta-analysis, we added publicly available data from a Finnish population and performed the GWAS across all populations. Genetic associations for the CHD phenotypes were evaluated in a linear mixed model using 62,089 SNPs. RESULTS: Multiple SNPs with genome-wide significant and suggestive associations were detected in single-population GWAS and the meta-analysis. Few of these SNPs overlapped between populations or between single-population GWAS and the meta-analysis, suggesting that many CHD-related QTL are population-specific. More significant or suggestive SNPs were identified when FCI grades were used as phenotypes in comparison to the case-control approach. MED13 (Chr 9) and PLEKHA7 (Chr 21) emerged as novel positional candidate genes associated with hip dysplasia. CONCLUSIONS: Our findings confirm the complex genetic nature of hip dysplasia in dogs, with multiple loci associated with the trait, most of which are population-specific. Routinely assessed CHD information collected across countries provide an opportunity to increase sample sizes and statistical power for association studies. While the lack of standardisation of CHD assessment schemes across countries poses a challenge, we showed that conversion of traits can be utilised to overcome this obstacle.


Asunto(s)
Displasia Pélvica Canina , Animales , Perros , Estudio de Asociación del Genoma Completo , Genotipo , Displasia Pélvica Canina/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
2.
Front Vet Sci ; 7: 386, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850996

RESUMEN

The BVA/KC (British Veterinary Association/Kennel Club) and FCI (Fédération Cynologique Internationale) are the main screening schemes used to evaluate the status of canine hip dysplasia (HD) in Europe. Jointly utilizing HD records from both BVA/KC and FCI schemes could improve the reliability of genetic evaluation within and across countries. In this study, HD scores for German shepherd dogs (GSDs) in the UK (using the BVA/KC scheme) and Sweden (using the FCI scheme) were used to investigate how to better operate joint genetic evaluations across the two schemes. It was shown that under a bivariate model, which regarded BVA/KC and FCI scores as different traits, the estimated genetic correlations between the UK and Swedish GSD populations were the same when using BVA/KC total or worse hip scores and for single-country or joint analysis of both the UK and Swedish populations. Under a univariate model that converted BVA/KC scores into FCI scores, the predictability of estimated breeding values was slightly improved by performing a joint analysis.

3.
Adv Genet (Hoboken) ; 1(1): e10024, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36619250

RESUMEN

Strong selection has resulted in substantial morphological and behavioral diversity across modern dog breeds, which makes dogs interesting model animals to study the underlying genetic architecture of these traits. However, results from between-breed analyses may confound selection signatures for behavior and morphological features that were coselected during breed development. In this study, we assess population genetic differences in a unique resource of dogs of the same breed but with systematic behavioral selection in only one population. We exploit these different breeding backgrounds to identify signatures of recent selection. Selection signatures within populations were found on chromosomes 4 and 19, with the strongest signals in behavior-related genes. Regions showing strong signals of divergent selection were located on chromosomes 1, 24, and 32, and include candidate genes for both physical features and behavior. Some of the selection signatures appear to be driven by loci associated with coat color (Chr 24; ASIP) and length (Chr 32; FGF5), while others showed evidence of association with behavior. Our findings suggest that signatures of selection within dog breeds have been driven by selection for morphology and behavior. Furthermore, we demonstrate that combining selection scans with association analyses is effective for dissecting the traits under selection.

4.
Heredity (Edinb) ; 123(6): 746-758, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31611599

RESUMEN

A favourable genetic structure and diversity of behavioural features highlights the potential of dogs for studying the genetic architecture of behaviour traits. However, behaviours are complex traits, which have been shown to be influenced by numerous genetic and non-genetic factors, complicating their analysis. In this study, the genetic contribution to behaviour variation in German Shepherd dogs (GSDs) was analysed using genomic approaches. GSDs were phenotyped for behaviour traits using the established Canine Behavioural Assessment and Research Questionnaire (C-BARQ). Genome-wide association study (GWAS) and regional heritability mapping (RHM) approaches were employed to identify associations between behaviour traits and genetic variants, while accounting for relevant non-genetic factors. By combining these complementary methods we endeavoured to increase the power to detect loci with small effects. Several behavioural traits exhibited moderate heritabilities, with the highest identified for Human-directed playfulness, a trait characterised by positive interactions with humans. We identified several genomic regions associated with one or more of the analysed behaviour traits. Some candidate genes located in these regions were previously linked to behavioural disorders in humans, suggesting a new context for their influence on behaviour characteristics. Overall, the results support dogs as a valuable resource to dissect the genetic architecture of behaviour traits and also highlight the value of focusing on a single breed in order to control for background genetic effects and thus avoid limitations of between-breed analyses.


Asunto(s)
Conducta Animal , Herencia Multifactorial/genética , Sitios de Carácter Cuantitativo/genética , Animales , Mapeo Cromosómico , Perros , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...