Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 104: 105156, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38768529

RESUMEN

BACKGROUND: Kabuki syndrome (KS) is a genetic disorder caused by DNA mutations in KMT2D, a lysine methyltransferase that methylates histones and other proteins, and therefore modifies chromatin structure and subsequent gene expression. Ketones, derived from the ketogenic diet, are histone deacetylase inhibitors that can 'open' chromatin and encourage gene expression. Preclinical studies have shown that the ketogenic diet rescues hippocampal memory neurogenesis in mice with KS via the epigenetic effects of ketones. METHODS: Single-cell RNA sequencing and mass spectrometry-based proteomics were used to explore molecular mechanisms of disease in individuals with KS (n = 4) versus controls (n = 4). FINDINGS: Pathway enrichment analysis indicated that loss of function mutations in KMT2D are associated with ribosomal protein dysregulation at an RNA and protein level in individuals with KS (FDR <0.05). Cellular proteomics also identified immune dysregulation and increased abundance of other lysine modification and histone binding proteins, representing a potential compensatory mechanism. A 12-year-old boy with KS, suffering from recurrent episodes of cognitive decline, exhibited improved cognitive function and neuropsychological assessment performance after 12 months on the ketogenic diet, with concomitant improvement in transcriptomic ribosomal protein dysregulation. INTERPRETATION: Our data reveals that lysine methyltransferase deficiency is associated with ribosomal protein dysfunction, with secondary immune dysregulation. Diet and the production of bioactive molecules such as ketone bodies serve as a significant environmental factor that can induce epigenetic changes and improve clinical outcomes. Integrating transcriptomic, proteomic, and clinical data can define mechanisms of disease and treatment effects in individuals with neurodevelopmental disorders. FUNDING: This study was supported by the Dale NHMRC Investigator Grant (APP1193648) (R.D), Petre Foundation (R.D), and The Sydney Children's Hospital Foundation/Kids Research Early and Mid-Career Researcher Grant (E.T).

2.
Cell Rep ; 43(5): 114219, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38748874

RESUMEN

Defining the molecular networks orchestrating human brain formation is crucial for understanding neurodevelopment and neurological disorders. Challenges in acquiring early brain tissue have incentivized the use of three-dimensional human pluripotent stem cell (hPSC)-derived neural organoids to recapitulate neurodevelopment. To elucidate the molecular programs that drive this highly dynamic process, here, we generate a comprehensive trans-omic map of the phosphoproteome, proteome, and transcriptome of the exit of pluripotency and neural differentiation toward human cerebral organoids (hCOs). These data reveal key phospho-signaling events and their convergence on transcriptional factors to regulate hCO formation. Comparative analysis with developing human and mouse embryos demonstrates the fidelity of our hCOs in modeling embryonic brain development. Finally, we demonstrate that biochemical modulation of AKT signaling can control hCO differentiation. Together, our data provide a comprehensive resource to study molecular controls in human embryonic brain development and provide a guide for the future development of hCO differentiation protocols.

3.
Hum Gene Ther ; 34(17-18): 917-926, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37350098

RESUMEN

Realization of the immense therapeutic potential of epigenetic editing requires development of clinically predictive model systems that faithfully recapitulate relevant aspects of the target disease pathophysiology. In female patients with ornithine transcarbamylase (OTC) deficiency, an X-linked condition, skewed inactivation of the X chromosome carrying the wild-type OTC allele is associated with increased disease severity. The majority of affected female patients can be managed medically, but a proportion require liver transplantation. With rapid development of epigenetic editing technology, reactivation of silenced wild-type OTC alleles is becoming an increasingly plausible therapeutic approach. Toward this end, privileged access to explanted diseased livers from two affected female infants provided the opportunity to explore whether engraftment and expansion of dissociated patient-derived hepatocytes in the FRG mouse might produce a relevant model for evaluation of epigenetic interventions. Hepatocytes from both infants were successfully used to generate chimeric mouse-human livers, in which clusters of primary human hepatocytes were either OTC positive or negative by immunohistochemistry (IHC), consistent with clonal expansion from individual hepatocytes in which the mutant or wild-type OTC allele was inactivated, respectively. Enumeration of the proportion of OTC-positive or -negative human hepatocyte clusters was consistent with dramatic skewing in one infant and minimal to modest skewing in the other. Importantly, IHC and fluorescence-activated cell sorting analysis of intact and dissociated liver samples from both infants showed qualitatively similar patterns, confirming that the chimeric mouse-human liver model recapitulated the native state in each infant. Also of importance was the induction of a treatable metabolic phenotype, orotic aciduria, in mice, which correlated with the presence of clonally expanded OTC-negative primary human hepatocytes. We are currently using this unique model to explore CRISPR-dCas9-based epigenetic targeting strategies in combination with efficient adeno-associated virus (AAV) gene delivery to reactivate the silenced functional OTC gene on the inactive X chromosome.


Asunto(s)
Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Ornitina Carbamoiltransferasa , Lactante , Humanos , Ratones , Femenino , Animales , Ornitina Carbamoiltransferasa/genética , Inactivación del Cromosoma X/genética , Hepatocitos , Hígado , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia
4.
Elife ; 112022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306157

RESUMEN

Understanding what factors influence plastic and genetic variation is valuable for predicting how organisms respond to changes in the selective environment. Here, using gene expression and DNA methylation as molecular phenotypes, we study environmentally induced variation among Arabidopsis lyrata plants grown at lowland and alpine field sites. Our results show that gene expression is highly plastic, as many more genes are differentially expressed between the field sites than between populations. These environmentally responsive genes evolve under strong selective constraint - the strength of purifying selection on the coding sequence is high, while the rate of adaptive evolution is low. We find, however, that positive selection on cis-regulatory variants has likely contributed to the maintenance of genetically variable environmental responses, but such variants segregate only between distantly related populations. In contrast to gene expression, DNA methylation at genic regions is largely insensitive to the environment, and plastic methylation changes are not associated with differential gene expression. Besides genes, we detect environmental effects at transposable elements (TEs): TEs at the high-altitude field site have higher expression and methylation levels, suggestive of a broad-scale TE activation. Compared to the lowland population, plants native to the alpine environment harbor an excess of recent TE insertions, and we observe that specific TE families are enriched within environmentally responsive genes. Our findings provide insight into selective forces shaping plastic and genetic variation. We also highlight how plastic responses at TEs can rapidly create novel heritable variation in stressful conditions.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Elementos Transponibles de ADN/genética , Expresión Génica
5.
Epigenetics Chromatin ; 15(1): 12, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428319

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA) copy number in oocytes correlates with oocyte quality and fertilisation outcome. The introduction of additional copies of mtDNA through mitochondrial supplementation of mtDNA-deficient Sus scrofa oocytes resulted in: (1) improved rates of fertilisation; (2) increased mtDNA copy number in the 2-cell stage embryo; and (3) improved development of the embryo to the blastocyst stage. Furthermore, a subset of genes showed changes in gene expression. However, it is still unknown if mitochondrial supplementation alters global and local DNA methylation patterns during early development. RESULTS: We generated a series of embryos in a model animal, Sus scrofa, by intracytoplasmic sperm injection (ICSI) and mitochondrial supplementation in combination with ICSI (mICSI). The DNA methylation status of ICSI- and mICSI-derived blastocysts was analysed by whole genome bisulfite sequencing. At a global level, the additional copies of mtDNA did not affect nuclear DNA methylation profiles of blastocysts, though over 2000 local genomic regions exhibited differential levels of DNA methylation. In terms of the imprinted genes, DNA methylation patterns were conserved in putative imprint control regions; and the gene expression profile of these genes and genes involved in embryonic genome activation were not affected by mitochondrial supplementation. However, 52 genes showed significant differences in expression as demonstrated by RNAseq analysis. The affected gene networks involved haematological system development and function, tissue morphology and cell cycle. Furthermore, seven mtDNA-encoded t-RNAs were downregulated in mICSI-derived blastocysts suggesting that extra copies of mtDNA affected tRNA processing and/or turnover, hence protein synthesis in blastocysts. We also showed a potential association between differentially methylated regions and changes in expression for 55 genes due to mitochondrial supplementation. CONCLUSIONS: The addition of just an extra ~ 800 copies of mtDNA into oocytes can have a significant impact on both gene expression and DNA methylation profiles in Sus scrofa blastocysts by altering the epigenetic programming established during oogenesis. Some of these changes may affect specific tissue-types later in life. Consequently, it is important to determine the longitudinal effect of these molecular changes on growth and development before considering human clinical practice.


Asunto(s)
Metilación de ADN , Transcriptoma , Animales , Blastocisto , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Suplementos Dietéticos , Desarrollo Embrionario , Metafase , Oocitos/metabolismo , Sus scrofa/genética , Sus scrofa/metabolismo , Porcinos
6.
Methods Mol Biol ; 2490: 101-140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35486243

RESUMEN

Single-cell RNA-sequencing (scRNA-Seq) is a widely used technology to reveal the heterogeneity and dynamics of tissues, organisms, and complex diseases. Here, a workflow is presented for preprocessing of scRNA-seq data to quantify gene abundances in individual cells followed by visualization and annotation of cells.


Asunto(s)
Análisis de la Célula Individual , Análisis de Secuencia de ARN , Secuenciación del Exoma , Flujo de Trabajo
7.
Plant J ; 104(3): 812-827, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32780488

RESUMEN

Agriculture faces increasing demand for yield, higher plant-derived protein content and diversity while facing pressure to achieve sustainability. Although the genomes of many of the important crops have been sequenced, the subcellular locations of most of the encoded proteins remain unknown or are only predicted. Protein subcellular location is crucial in determining protein function and accumulation patterns in plants, and is critical for targeted improvements in yield and resilience. Integrating location data from over 800 studies for 12 major crop species into the cropPAL2020 data collection showed that while >80% of proteins in most species are not localised by experimental data, combining species data or integrating predictions can help bridge gaps at similar accuracy. The collation and integration of over 61 505 experimental localisations and more than 6 million predictions showed that the relative sizes of the protein catalogues located in different subcellular compartments are comparable between crops and Arabidopsis. A comprehensive cross-species comparison showed that between 50% and 80% of the subcellulomes are conserved across species and that conservation only depends to some degree on the phylogenetic relationship of the species. Protein subcellular locations in major biosynthesis pathways are more often conserved than in metabolic pathways. Underlying this conservation is a clear potential for subcellular diversity in protein location between species by means of gene duplication and alternative splicing. Our cropPAL data set and search platform (https://crop-pal.org) provide a comprehensive subcellular proteomics resource to drive compartmentation-based approaches for improving yield, protein composition and resilience in future crop varieties.


Asunto(s)
Productos Agrícolas/metabolismo , Bases de Datos de Proteínas , Proteínas de Plantas/metabolismo , Compartimento Celular , Productos Agrícolas/citología , Fitomejoramiento , Células Vegetales/metabolismo , Especificidad de la Especie
8.
Nucleic Acids Res ; 45(D1): D1064-D1074, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899614

RESUMEN

The SUBcellular location database for Arabidopsis proteins (SUBA4, http://suba.live) is a comprehensive collection of manually curated published data sets of large-scale subcellular proteomics, fluorescent protein visualization, protein-protein interaction (PPI) as well as subcellular targeting calls from 22 prediction programs. SUBA4 contains an additional 35 568 localizations totalling more than 60 000 experimental protein location claims as well as 37 new suborganellar localization categories. The experimental PPI data has been expanded to 26 327 PPI pairs including 856 PPI localizations from experimental fluorescent visualizations. The new SUBA4 user interface enables users to choose quickly from the filter categories: 'subcellular location', 'protein properties', 'protein-protein interaction' and 'affiliations' to build complex queries. This allows substantial expansion of search parameters into 80 annotation types comprising 1 150 204 new annotations to study metadata associated with subcellular localization. The 'BLAST' tab contains a sequence alignment tool to enable a sequence fragment from any species to find the closest match in Arabidopsis and retrieve data on subcellular location. Using the location consensus SUBAcon, the SUBA4 toolbox delivers three novel data services allowing interactive analysis of user data to provide relative compartmental protein abundances and proximity relationship analysis of PPI and coexpression partners from a submitted list of Arabidopsis gene identifiers.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biología Computacional/métodos , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Espacio Intracelular/metabolismo , Anotación de Secuencia Molecular , Transporte de Proteínas , Proteómica , Programas Informáticos , Navegador Web
9.
Plant Physiol ; 173(2): 1164-1176, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28011633

RESUMEN

We report the partial complementation and subsequent comparative molecular analysis of two nonviable mutants impaired in chloroplast translation, one (emb2394) lacking the RPL6 protein, and the other (emb2654) carrying a mutation in a gene encoding a P-class pentatricopeptide repeat protein. We show that EMB2654 is required for the trans-splicing of the plastid rps12 transcript and that therefore the emb2654 mutant lacks Rps12 protein and fails to assemble the small subunit of the plastid ribosome, explaining the loss of plastid translation and consequent embryo-lethal phenotype. Predictions of the EMB2654 binding site match a small RNA "footprint" located on the 5' half of the trans-spliced intron that is almost absent in the partially complemented mutant. EMB2654 binds sequence specifically to this target sequence in vitro. Altered patterns in nuclease-protected small RNA fragments in emb2654 show that EMB2654 binding must be an early step in, or prior to, the formation of a large protein-RNA complex covering the free ends of the two rps12 intron halves.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Trans-Empalme/genética , Secuencia de Bases , Sitios de Unión , Prueba de Complementación Genética , Intrones/genética , Modelos Genéticos , Mutación/genética , Conformación de Ácido Nucleico , Fenotipo , Plastidios/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
10.
Plant Cell Physiol ; 57(1): e9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26556651

RESUMEN

Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta/genética , Hordeum/genética , Oryza/genética , Triticum/genética , Zea mays/genética , Secuencia de Aminoácidos , Biología Computacional , Productos Agrícolas , Hordeum/metabolismo , Proteínas de Plantas/genética , Transporte de Proteínas
11.
Appl Spectrosc ; 69(4): 473-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25742260

RESUMEN

Despite the importance of data reduction as part of the processing of reflection-based classifications, this study represents one of the first in which the effects of both spatial and spectral data reductions on classification accuracies are quantified. Furthermore, the effects of approaches to data reduction were quantified for two separate classification methods, linear discriminant analysis (LDA) and support vector machine (SVM). As the model dataset, reflection data were acquired using a hyperspectral camera in 230 spectral channels from 401 to 879 nm (spectral resolution of 2.1 nm) from field pea (Pisum sativum) samples with and without internal pea weevil (Bruchus pisorum) infestation. We deployed five levels of spatial data reduction (binning) and eight levels of spectral data reduction (40 datasets). Forward stepwise LDA was used to select and include only spectral channels contributing the most to the separation of pixels from non-infested and infested field peas. Classification accuracies obtained with LDA and SVM were based on the classification of independent validation datasets. Overall, SVMs had significantly higher classification accuracies than LDAs (P < 0.01). There was a negative association between pixel resolution and classification accuracy, while spectral binning equivalent to up to 98% data reduction had negligible effect on classification accuracies. This study supports the potential use of reflection-based technologies in the quality control of food products with internal defects, and it highlights that spatial and spectral data reductions can (1) improve classification accuracies, (2) vastly decrease computer constraints, and (3) reduce analytical concerns associated with classifications of large and high-dimensional datasets.


Asunto(s)
Análisis de los Alimentos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis Espectral/métodos , Animales , Análisis Discriminante , Alimentos/normas , Pisum sativum/química , Pisum sativum/parasitología , Máquina de Vectores de Soporte , Gorgojos/química
12.
BMC Plant Biol ; 14: 68, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24649892

RESUMEN

BACKGROUND: Phytophthora cinnamomi is a devastating pathogen worldwide and phosphite (Phi), an analogue of phosphate (Pi) is highly effective in the control of this pathogen. Phi also interferes with Pi starvation responses (PSR), of which auxin signalling is an integral component. In the current study, the involvement of Pi and the auxin signalling pathways in host and Phi-mediated resistance to P. cinnamomi was investigated by screening the Arabidopsis thaliana ecotype Col-0 and several mutants defective in PSR and the auxin response pathway for their susceptibility to this pathogen. The response to Phi treatment was also studied by monitoring its effect on Pi- and the auxin response pathways. RESULTS: Here we demonstrate that phr1-1 (phosphate starvation response 1), a mutant defective in response to Pi starvation was highly susceptible to P. cinnamomi compared to the parental background Col-0. Furthermore, the analysis of the Arabidopsis tir1-1 (transport inhibitor response 1) mutant, deficient in the auxin-stimulated SCF (Skp1 - Cullin - F-Box) ubiquitination pathway was also highly susceptible to P. cinnamomi and the susceptibility of the mutants rpn10 and pbe1 further supported a role for the 26S proteasome in resistance to P. cinnamomi. The role of auxin was also supported by a significant (P < 0.001) increase in susceptibility of blue lupin (Lupinus angustifolius) to P. cinnamomi following treatment with the inhibitor of auxin transport, TIBA (2,3,5-triiodobenzoic acid). Given the apparent involvement of auxin and PSR signalling in the resistance to P. cinnamomi, the possible involvement of these pathways in Phi mediated resistance was also investigated. Phi (especially at high concentrations) attenuates the response of some Pi starvation inducible genes such as AT4, AtACP5 and AtPT2 in Pi starved plants. However, Phi enhanced the transcript levels of PHR1 and the auxin responsive genes (AUX1, AXR1and AXR2), suppressed the primary root elongation, and increased root hair formation in plants with sufficient Pi. CONCLUSIONS: The auxin response pathway, particularly auxin sensitivity and transport, plays an important role in resistance to P. cinnamomi in Arabidopsis, and phosphite-mediated resistance may in some part be through its effect on the stimulation of the PSR and auxin response pathways.


Asunto(s)
Arabidopsis/microbiología , Resistencia a la Enfermedad/inmunología , Ácidos Indolacéticos/metabolismo , Lupinus/microbiología , Fosfitos/farmacología , Phytophthora/fisiología , Transducción de Señal/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Lupinus/efectos de los fármacos , Lupinus/metabolismo , Mutación/genética , Fosfatos/deficiencia , Fosfatos/farmacología , Phytophthora/efectos de los fármacos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/metabolismo , Transducción de Señal/genética , Ácidos Triyodobenzoicos
13.
Genome ; 53(7): 558-67, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20616877

RESUMEN

Camelina (Camelina sativa (L.) Crantz) is an oilseed known for its potential as a low-input biofuel feedstock and its high levels of beneficial fatty acids. We investigated the role of geographical origin in genetic variation and fatty acid content, expecting to find significant variability among 53 accessions and a link between ecogeography and both origin and key oil traits. Amplified fragment length polymorphism (AFLP) fingerprinting revealed high levels of diversity within the 53 accessions. Even though sampling was relatively biased towards the Russian-Ukrainian area, this region was identified as a genetic diversity hotspot and possible centre of origin for camelina. The accessions were categorized by principal coordinate analysis using molecular marker data, enabling identification of links between geographical distribution and these categories. The influence of geographic location on four canola oil quality measures in camelina was evaluated using a geographic information system. These measures were (1) more than 30% alpha-linolenic acid, (2) less than 3% erucic acid, (3) less than 10% saturated fatty acids, and (4) a ratio of alpha-linolenic to linoleic acid greater than 1. The results clearly confirm that camelina oil quality characteristics are strongly influenced by environmental factors. The unprecedented high genetic diversity in this group of accessions offers an excellent opportunity to investigate valuable genes for successful adaptation of camelina to specific ecogeographical conditions such as drought.


Asunto(s)
Brassicaceae/química , Brassicaceae/genética , Variación Genética , Geografía , Aceites de Plantas/química , Ácido alfa-Linolénico/metabolismo , Marcadores Genéticos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...