Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Brain ; 8(1): 82, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26637371

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by senile plaques, extracellular deposits composed primarily of amyloid-beta (Aß), and neurofibrillary tangles, which are abnormal intracellular inclusions containing hyperphosphorylated tau. The amyloid cascade hypothesis posits that the deposition of Aß in the brain parenchyma initiates a sequence of events that leads to dementia. However, the molecular process by which the extracellular accumulation of Aß peptides promotes intracellular pathologic changes in tau filaments remains unclear. To elucidate this process, we presumed that astrocytes might trigger neuronal reactions, leading to tau phosphorylation. In this study, we examined AD pathology from the perspective of the astrocyte-neuron interaction. RESULTS: A cytokine-array analysis revealed that Aß stimulates astrocytes to release several chemical mediators that are primarily related to inflammation and cell adhesion. Among those mediators, insulin-like growth factor (IGF)-binding protein 3 (IGFBP-3) was highly upregulated. In AD brains, the expression of IGFBP-3 was found to be increased by western blot analysis, and increased expression of IGFBP-3 was observed in astrocytes via fluorescence microscopy. In addition, we reproduced the increase in IGFBP-3 after treatment with Aß using human astrocytoma cell lines and found that IGFBP-3 was expressed via calcineurin. In AD brains, the activated forms of calcineurin were found to be increased by western blot analysis, and increased expression of calcineurin was observed in astrocytes via fluorescence microscopy. When Ser9 of glycogen synthase kinase-3ß (GSK-3ß) is phosphorylated, GSK-3ß is controlled and tau phosphorylation is suppressed. Aß suppresses the phosphorylation of GSK-3ß, leading to tau phosphorylation. In this study, we found that IGF-Ι suppressed tau phosphorylation induced by Aß, although IGFBP-3 inhibited this property of IGF-Ι. As a result, IGFBP-3 contributed to tau phosphorylation and cell death induced by Aß. CONCLUSIONS: Our study suggested that calcineurin in astrocytes was activated by Aß, leading to IGFBP-3 release. We further demonstrated that IGFBP-3 produced by astrocytes induced tau phosphorylation in neurons. Our study provides novel insights into the role of astrocytes in the induction of tau phosphorylation and suggests that IGFBP-3 could be an important link between Aß and tau pathology and an important therapeutic target.


Asunto(s)
Enfermedad de Alzheimer/patología , Astrocitos/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Astrocitoma/genética , Astrocitoma/patología , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Calcineurina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Microscopía Fluorescente , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tacrolimus/farmacología , Regulación hacia Arriba/efectos de los fármacos , Proteínas tau/metabolismo
2.
Neurosci Lett ; 547: 10-5, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23669644

RESUMEN

Alzheimer's disease (AD) is characterized by the deposition of amyloid-ß (Aß) plaques, senile plaque. The Aß peptide is cleaved from amyloid precursor protein (APP) by ß-secretase and γ-secretase. Until now, many literatures have documented that the high concentration of copper is present in Aß plaques and enhances aggregation of. The APP copper binding domain (CuBD) is located in the N-terminal next to the growth factor-like domain that gets involved in APP homodimerization. Importantly, dimerization of APP has profound effect on Aß production. We investigated whether copper alters the state of APP dimerization and how it affects APP metabolism. Here, we demonstrate that copper enhanced APP dimerization and increased extracellular release of Aß. Moreover, copper chelator, D-penicillamine, suppressed APP dimerization and decreased extracellular release of Aß. These results suggest that the action of copper may be profoundly associated with the pathway of Aß production in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cobre/metabolismo , Multimerización de Proteína , Precursor de Proteína beta-Amiloide/química , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Inmunoprecipitación
3.
J Neurochem ; 121(6): 964-73, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22443192

RESUMEN

We have recently reported that Presenilin 1 (PS1), a causative gene of familial Alzheimer disease (AD), down-regulates the expression level of insulin receptor (IR) as well as its signaling through a γ-secretase-independent pathway. PS1 is phosphorylated by glycogen synthase kinase 3 ß at the serine 353 and 357 residues. The main purpose of the present study was to clarify the effect of PS1 phosphorylation on IR/insulin signaling. Here, we demonstrate that the pseudo-phosphorylation mutant of PS1 inhibited IR transcription and reduced IR expression compared with wild-type PS1. Importantly, there was a decrease in expression of IR in AD brains, and the phosphorylation ratio of PS1 was negatively correlated with IR level in human brain samples. In the data from mouse models of AD, IR reduction was not observed at the pre-Aß deposition stage but became apparent in that of post-Aß deposition. Together with our previous reports, these results suggest that phosphorylated PS1 can promote the down-regulation of insulin signaling, which may be a positive feed-forward mechanism inhibiting insulin signaling. As insulin resistance is reported to be a risk factor for sporadic AD, this PS1-mediated regulatory mechanism of brain insulin signaling may be causally associated with AD pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Insulina/metabolismo , Presenilina-1/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fosforilación
4.
Neurobiol Aging ; 33(5): 1011.e11-23, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22197104

RESUMEN

The pathogenesis of Alzheimer's disease (AD) is tightly associated with metabolic dysfunctions. In particular, a potential link between type 2 diabetes (T2DM) and AD has been suggested epidemiologically, clinically, and experimentally, and some studies have suggested that exercise or dietary intervention reduces risk of cognitive decline. However, there is little solid molecular evidence for the effective intervention of metabolic dysfunctions for prevention of AD. In the present study, we established the AD model mice with diabetic conditions through high-fat diet (HFD) to examine the effect of environmental enrichment (EE) on HFD-induced AD pathophysiology. Here, we demonstrated that HFD markedly deteriorated memory impairment and increased ß-amyloid (Aß) oligomers as well as Aß deposition in amyloid precursor protein (APP) transgenic mice, which was reversed by exposure to an enriched environment for 10 weeks, despite the continuation of HFD. These studies provide solid evidence that EE is a useful intervention to ameliorate behavioral changes and AD pathology in HFD-induced aggravation of AD symptoms in APP transgenic mice.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Grasas de la Dieta/toxicidad , Exposición a Riesgos Ambientales , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/prevención & control , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/genética , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Grasas de la Dieta/antagonistas & inhibidores , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Transgénicos
5.
J Biol Chem ; 286(28): 25309-16, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21622565

RESUMEN

Presenilin (PS), a causative molecule of familial Alzheimer disease, acts as a crucial component of the γ-secretase complex, which is required to cleave type I transmembrane proteins such as amyloid precursor protein and Notch. However, it also functions through γ-secretase-independent pathways. Recent reports suggested that PS could regulate the expression level of cell surface receptors, including the PDGF and EGF receptors, followed by modulating their downstream pathways via γ-secretase-independent mechanisms. The main purpose of this study was to clarify the effect of PS on expression of the insulin receptor (IR) as well as on insulin signaling. Here, we demonstrate that PS inhibited IR transcription and reduced IR expression, and this was followed by down-regulation of insulin signaling. Moreover, we suggest that neither γ-secretase activity nor Wnt/ß-catenin signaling can reduce the expression of IR, but a PS-mediated increase in the intracellular Ca(2+) level can be associated with it. These results clearly indicate that PS can functionally regulate insulin signaling by controlling IR expression.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Señalización del Calcio/fisiología , Regulación de la Expresión Génica/fisiología , Insulina/metabolismo , Presenilinas/metabolismo , Receptor de Insulina/biosíntesis , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Calcio/metabolismo , Células Cultivadas , Insulina/genética , Ratones , Ratones Noqueados , Presenilinas/genética , Receptor de Insulina/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo
6.
Neurosci Lett ; 483(3): 157-61, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20696212

RESUMEN

Recently, insulin signaling has been highlighted in the pathology of Alzheimer's disease (AD). Although the association between insulin signaling and Tau pathology has been investigated in several studies, the interaction between insulin signaling and Presenilin 1 (PS1), a key molecule of amyloid beta (Abeta) pathology, has not been elucidated so far. In this study, we demonstrated that insulin inhibited PS1 phosphorylation at serine residues (serine 353, 357) via phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway and strengthened the trimeric complex of PS1/N-cadherin/beta-catenin, consequently relocalizing PS1 to the cell surface. Since our recent report suggests that PS1/N-cadherin/beta-catenin complex regulates Abeta production, it is likely that insulin signaling affects Abeta pathology by regulating PS1 localization.


Asunto(s)
Insulina/farmacología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Presenilina-1/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Cadherinas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Corteza Cerebral , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Inmunoprecipitación/métodos , Ratones , Modelos Biológicos , Neuroblastoma/patología , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Serina/metabolismo , Transfección/métodos
7.
PLoS One ; 4(2): e4466, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19209226

RESUMEN

BACKGROUND: The subcellular localization of membrane and secreted proteins is finely and dynamically regulated through intracellular vesicular trafficking for permitting various biological processes. Drosophila Amyloid precursor protein like (APPL) and Hikaru genki (HIG) are examples of proteins that show differential subcellular localization among several developmental stages. METHODOLOGY/PRINCIPAL FINDINGS: During the study of the localization mechanisms of APPL and HIG, we isolated a novel mutant of the gene, CG1973, which we named yata. This molecule interacted genetically with Appl and is structurally similar to mouse NTKL/SCYL1, whose mutation was reported to cause neurodegeneration. yata null mutants showed phenotypes that included developmental abnormalities, progressive eye vacuolization, brain volume reduction, and lifespan shortening. Exogenous expression of Appl or hig in neurons partially rescued the mutant phenotypes of yata. Conversely, the phenotypes were exacerbated in double null mutants for yata and Appl. We also examined the subcellular localization of endogenous APPL and exogenously pulse-induced APPL tagged with FLAG by immunostaining the pupal brain and larval motor neurons in yata mutants. Our data revealed that yata mutants showed impaired subcellular localization of APPL. Finally, yata mutant pupal brains occasionally showed aberrant accumulation of Sec23p, a component of the COPII coat of secretory vesicles traveling from the endoplasmic reticulum (ER) to the Golgi. CONCLUSION/SIGNIFICANCE: We identified a novel gene, yata, which is essential for the normal development and survival of tissues. Loss of yata resulted in the progressive deterioration of the nervous system and premature lethality. Our genetic data showed a functional relationship between yata and Appl. As a candidate mechanism of the abnormalities, we found that yata regulates the subcellular localization of APPL and possibly other proteins.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insecto , Longevidad/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/patología , Proteínas Quinasas/genética , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Encéfalo/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Ojo/citología , Ojo/ultraestructura , Eliminación de Gen , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Fenotipo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Fracciones Subcelulares/metabolismo
8.
J Neurochem ; 108(2): 350-60, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19046403

RESUMEN

In neurons, Presenilin 1(PS1)/gamma-secretase is located at the synapses, bound to N-cadherin. We have previously reported that N-cadherin-mediated cell-cell contact promotes cell-surface expression of PS1/gamma-secretase. We postulated that N-cadherin-mediated trafficking of PS1 might impact synaptic PS1-amyloid precursor protein interactions and Abeta generation. In the present report, we evaluate the effect of N-cadherin-based contacts on Abeta production. We demonstrate that stable expression of N-cadherin in Chinese hamster ovary cells, expressing the Swedish mutant of human amyloid precursor protein leads to enhanced secretion of Abeta in the medium. Moreover, N-cadherin expression decreased Abeta(42/40) ratio. The effect of N-cadherin expression on Abeta production was accompanied by the enhanced accessibility of PS1/gamma-secretase to amyloid precursor protein as well as a conformational change of PS1, as demonstrated by the fluorescence lifetime imaging technique. These results indicate that N-cadherin-mediated synaptic adhesion may modulate Abeta secretion as well as the Abeta(42/40) ratio via PS1/N-cadherin interactions.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Antígenos CD/fisiología , Cadherinas/fisiología , Fragmentos de Péptidos/metabolismo , Animales , Antígenos CD/química , Antígenos CD/genética , Cadherinas/química , Cadherinas/genética , Células Cultivadas , Cricetinae , Cricetulus , Medio de Cultivo Libre de Suero/farmacología , Embrión de Mamíferos , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Expresión Génica/fisiología , Regulación de la Expresión Génica/genética , Hipocampo/citología , Humanos , Mutación/genética , Neuronas/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Ratas , Relación Estructura-Actividad , Transfección/métodos , Tricotecenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...