Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Perinatol ; 44(4): 532-538, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326606

RESUMEN

INTRODUCTION: There is an extensive body of research regarding neurological outcomes following neonatal hypoxic-ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH), with limited data on growth outcomes. We examined perinatal characteristics associated with postnatal growth in this population. METHODS: Convenience cohort of 66 infants with HIE who underwent TH and participated in follow-up at 24 months of age were included. Regression modeling including perinatal anthropomorphics, markers of HIE, and systemic injury was used to evaluate growth at 24 months. RESULTS: Birth head circumference was associated with weight (p = 0.036). MRI severity, pH at admission and birth head circumference were associated with height (p = 0.043, p = 0.015 and p = 0.043 respectively). MRI severity and length of intubation were associated with head circumference (p = 0.038 and p < 0.001 respectively). CONCLUSION: There was a significant association between specific early factors and growth at 24 months among infants with HIE treated with TH.


Asunto(s)
Hipotermia Inducida , Hipotermia , Hipoxia-Isquemia Encefálica , Recién Nacido , Lactante , Embarazo , Femenino , Humanos , Preescolar , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/complicaciones , Hipotermia/complicaciones , Cefalometría
2.
J Comp Neurol ; 530(8): 1148-1163, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34687459

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) causes lifelong neurologic disability. Despite the use of therapeutic hypothermia, memory deficits and executive functions remain severely affected. Cholinergic neurotransmission from the basal forebrain to neocortex and hippocampus is central to higher cortical functions. We examined the basal forebrain by light microscopy and reported loss of choline acetyltransferase-positive (ChAT)+ neurons, at postnatal day (P) 40, in the ipsilateral medial septal nucleus (MSN) after neonatal hypoxia-ischemia (HI) in mice. There was no loss of ChAT+ neurons in the ipsilateral nucleus basalis of Meynert (nbM) and striatum. Ipsilateral striatal and nbM ChAT+ neurons were abnormal with altered immunoreactivity for ChAT, shrunken and crenated somas, and dysmorphic appearing dendrites. Using confocal images with 3D reconstruction, nbM ChAT+ dendrites in HI mice were shorter than sham (p = .0001). Loss of ChAT+ neurons in the MSN directly correlated with loss of ipsilateral hippocampal area. In the nbM and striatum, percentage of abnormal ChAT+ neurons correlated with loss of ipsilateral cerebral cortical and striatal area, respectively. Acetylcholinesterase (AChE) activity increased in adjacent ipsilateral cerebral cortex and hippocampus and the increase was linearly related to loss of cortical and hippocampal area. Numbers and size of cathepsin D+ lysosomes increased in large neurons in the ipsilateral nbM. After neonatal HI, abnormalities were found throughout the major cholinergic systems in relationship to amount of forebrain area loss. There was also an upregulation of cathepsin D+ particles within the nbM. Cholinergic neuropathology may underlie the permanent dysfunction in learning, memory, and executive function after neonatal brain injury.


Asunto(s)
Prosencéfalo Basal , Acetilcolinesterasa/metabolismo , Animales , Prosencéfalo Basal/metabolismo , Colina O-Acetiltransferasa/metabolismo , Colinérgicos , Fibras Colinérgicas/metabolismo , Hipoxia , Isquemia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...