Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 346: 140554, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303381

RESUMEN

Cadmium (Cd) contamination of farmland soils is a growing concern because of its highly toxic impact on ecosystems and human health. Chelator-assisted washing and chemical immobilization are effective remediation strategies for Cd-contaminated soils. Ethylenediaminetetraacetic acid (EDTA) has traditionally been used for soil washing, but its persistence in the environment and subsequent toxicity have raised significant ecological concerns. Consequently, biodegradable chelators have gained increasing attention as eco-friendly alternatives to the persistent chelator, EDTA. Therefore, this study evaluated the performance and efficacy of three biodegradable chelators: L-glutamate-N,N'-diacetic acid (GLDA), methylglycine-diacetic acid (MGDA), and 3-hydroxy-2,2'-iminodisuccinic acid (HIDS) in comparison to EDTA for remediating a real Cd-contaminated agricultural soil. The influence of treatment parameters, including chelator variants, washing time, chelator concentration, solution pH, and liquid-to-soil ratio (L/S) on Cd extraction was studied and optimized to attain the maximum removal rate. Following chelator-assisted washing, the efficacy of a stabilization preference combining FeCl3 and CaO in reducing the leaching potential of residual Cd in chelator-washed soil residues was also investigated. GLDA demonstrated comparable Cd extraction efficiency to EDTA, and the Cd extraction efficiency was found to be positively correlated with the soil washing parameters. However, under the optimized conditions (chelator concentration: 10 mmol L-1; washing time: 3 h; solution pH: 3; L/S ratio: 10:1), GLDA exhibited a higher Cd extraction rate than EDTA or the other chelators. Furthermore, a post-treatment process incorporating FeCl3 and CaO substantially diminished the water-leachable Cd content in the resultant soil residues. The proposed remediation strategy, which combines chemically assisted washing and stabilization, could be a practical option for extracting bulk Cd from soil and reducing the leaching potential of residual Cd.


Asunto(s)
Cloruros , Restauración y Remediación Ambiental , Compuestos Férricos , Metales Pesados , Contaminantes del Suelo , Humanos , Cadmio , Ácido Edético/química , Metales Pesados/análisis , Ecosistema , Contaminantes del Suelo/análisis , Quelantes/química , Suelo/química
2.
Environ Sci Pollut Res Int ; 30(52): 112052-112070, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37824052

RESUMEN

Excavated debris (soil and rock) contaminated with geogenic arsenic (As) is an increasing concern for regulatory organizations and construction stakeholders. Chelator-assisted soil flushing is a promising method for practical on-site remediation of As-contaminated soil, offering technical, economic, and environmental benefits. Ethylenediaminetetraacetic acid (EDTA) is the most prevalent chelator used for remediating As-contaminated soil. However, the extensive environmental persistence and potential toxicity of EDTA necessitate the exploration of eco-compliant alternatives. In this study, the feasibility of the conventional flushing method pump-and-treat and two newly designed immersion and sprinkling techniques were evaluated at the laboratory scale (small-scale laboratory experiments) for the on-site treatment of As-contaminated excavated debris. Two biodegradable chelators, L-glutamic acid-N,N'-diacetic acid (GLDA) and 3-hydroxy-2,2'-iminodisuccinic acid (HIDS), were examined as eco-friendly substitutes for EDTA. Additionally, this study highlights a useful post-treatment measure to ensure minimal mobility of residual As in the chelator-treated debris residues. The pump-and-treat method displayed rapid As-remediation (t, 3 h), but it required a substantial volume of washing solution (100 mL g-1). Conversely, the immersion technique demonstrated an excellent As-extraction rate using a relatively smaller washing solution (0.33 mL g-1) and shorter immersion time (t, 3 h). In contrast, the sprinkling technique showed an increased As-extraction rate over an extended period (t, 48 h). Among the chelators employed, the biodegradable chelator HIDS (10 mmol L-1; pH, 3) exhibited the highest As-extraction efficiency. Furthermore, the post-treatment of chelator-treated debris with FeCl3 and CaO successfully reduced the leachable As content below the permissible limit.


Asunto(s)
Arsénico , Restauración y Remediación Ambiental , Isópodos , Contaminantes del Suelo , Animales , Arsénico/análisis , Ácido Edético/química , Contaminantes del Suelo/análisis , Quelantes/química , Suelo/química
3.
Chemosphere ; 343: 140216, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748655

RESUMEN

We previously reported that monoalkyl dithiocarbamate-modified cellulose (DMC) exhibited excellent adsorption performance for arsenite (AsIII), cadmium (CdII), lead (PbII), gold (AuIII), silver (AgI), platinum (PtIV), and palladium (PdII). However, its adsorption capability for AsIII decreased by 96.4% after two weeks of storage at 40 °C under an air atmosphere. This decrease in adsorption ability could occur for other metals that dithiocarbamates can extract. In this study, we investigated the adsorption performance of DMC for various metals before and after storage and proposed a possible mechanism for this decrease. We found significant decreases in the adsorption abilities of PbII (11.4%), AgI (39.5%), PtIV (65.5%), and PdII (69.6%), whereas AuIII and CdII adsorption was largely retained, with decreases of 1.1% and 4.0%, respectively. FTIR analysis of the stored DMC revealed the formation of S-S bonds and the retention of dithiocarbamate peaks, indicating the formation of dithiocarbamate dimers (thiuram disulfides). To further support thiuram disulfide formation, dialkyl thiuram disulfides were tested for the adsorption of the seven employed metals. The metal adsorption behavior of dialkyl thiuram disulfides was almost identical to that of the stored adsorbent, ensuring thiuram disulfide formation. In conclusion, the loss of adsorption capability can be mainly attributable to the formation of thiuram disulfide.

4.
Environ Sci Pollut Res Int ; 30(43): 98246-98260, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37606771

RESUMEN

The growth response and incorporation of As into the Sargassum horneri was evaluated for up to 7 days using either arsenate (As(V)), arsenite (As(III)) or methylarsonate (MMAA(V) and DMAA(V)) at 0, 0.25, 0.5, 1, 2, and 4 µM with various phosphate (P) levels (0, 2.5, 5 and 10 µM). Except As(III), algal chlorophyll fluorescence was almost similar and insignificant, regardless of whether different concentrations of P or As(V) or MMAA(V) or DMAA(V) were provided (p > 0.05). As(III) at higher concentrations negatively affected algal growth rate, though concentrations of all As species had significant effects on growth rate (p < 0.01). Growth studies indicated that toxicity and sensitivity of As species to the algae followed the trend: As(III) > As(V) > MMAA(V) ~ DMAA(V). As bioaccumulation was varied significantly depending on the increasing concentrations of all As species and increasing P levels considerably affected As(V) uptake but no other As species uptake (p < 0.01). The algae accumulated As(V) and As(III) more efficiently than MMAA(V) and DMAA(V). At equal concentrations of As (4 µM) and P (0 µM), the alga was able to accumulate 638.2 ± 71.3, 404.1 ± 70.6, 176.7 ± 19.6, and 205.6 ± 33.2 nM g-1 dry weight of As from As(V), As(III), MMAA(V), and DMAA(V), respectively. The influence of low P levels with increased As(V) concentrations more steeply increased As uptake, but P on other As species did not display similar trends. The algae also showed passive modes for As adsorption of all As species. The maximum adsorption of As (63.7 ± 6.1 nM g-1 dry weight) was found due to 4 µM As(V) exposure, which was 2.5, 7.3, and 6.9 times higher than the adsorption amounts for the same concentration of As(III), MMAA(V), and DMAA(V) exposure, respectively. The bioavailability and accumulation behaviors of As were significantly influenced by P and As species, and this information is essential for As research on marine ecosystems.


Asunto(s)
Arsénico , Sargassum , Bioacumulación , Disponibilidad Biológica , Ecosistema , Fosfatos
5.
Biomacromolecules ; 24(8): 3767-3774, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37490713

RESUMEN

The synthesis of cellulose acrylate from cellulose with acryloyl chloride has been problematic due to unexpected gelation of the reaction mixture, but we discovered that the use of bulky amines was crucial for the reproducibility of the synthesis of cellulose acrylate. The solubility of the obtained cellulose acrylate depended on the reaction conditions due to the possible cross-linking oxa-Michael reaction between a remaining hydroxy group and the introduced acrylate group. The synthesized cellulose acrylate worked as a useful precursor of chemically modified cellulose materials because it reacted with various functionalized nucleophiles such as secondary amines and thiols as a Michael donor. This method was applied to the synthesis of N-methyl-d-glucamine-modified cellulose that works as an adsorbent for the removal of B(OH)3 in water.


Asunto(s)
Aminas , Celulosa , Reproducibilidad de los Resultados , Solubilidad , Acrilatos
6.
Phys Rev Lett ; 130(5): 051801, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800472

RESUMEN

The KamLAND-Zen experiment has provided stringent constraints on the neutrinoless double-beta (0νßß) decay half-life in ^{136}Xe using a xenon-loaded liquid scintillator. We report an improved search using an upgraded detector with almost double the amount of xenon and an ultralow radioactivity container, corresponding to an exposure of 970 kg yr of ^{136}Xe. These new data provide valuable insight into backgrounds, especially from cosmic muon spallation of xenon, and have required the use of novel background rejection techniques. We obtain a lower limit for the 0νßß decay half-life of T_{1/2}^{0ν}>2.3×10^{26} yr at 90% C.L., corresponding to upper limits on the effective Majorana neutrino mass of 36-156 meV using commonly adopted nuclear matrix element calculations.

7.
Anal Sci ; 39(5): 663-670, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36565387

RESUMEN

Recently, biodegradable aminopolycarboxylic acid chelating agents have attracted attention as an alternative to environmentally persistent chelating agents such as ethylenediamine-N,N,N',N'-tetraacetic acid. However, the detection of chelating agents requires complexation with metals or derivatization by esterification reagents, and their direct detection using the currently available analytical methods still represents a challenge. Herein, we describe a direct analytical method for the biodegradable chelating agents ethylenediamine-N,N'-disuccinic acid, 3-hydroxy-2,2'-iminodisuccinic acid, methylglycine-N,N'-diacetic acid, and N,N-bis(carboxymethyl)-L-glutamic acid, via ultra-performance liquid chromatography/electrospray ionization quadrupole/time-of-flight mass spectrometry. Satisfactory retention and separation with a good peak shape were successfully achieved using a metal-free hydrophilic interaction liquid chromatographic column. The calibration curves showed good linearity in the range of 1.0-50 µM with correlation coefficients greater than 0.9988. The detection limits ranged from 0.04 to 0.12 µM. Furthermore, the developed method could be applied to the quantitative analysis of the four chelating agents in biodegradation and photodegradation experiments at the laboratory level. The proposed method, which offers the advantages of quickness, sensitivity, and requiring no complicated pretreatment steps, is expected to contribute significantly to the practical analysis of chelating agents in environmental water samples.


Asunto(s)
Quelantes , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Quelantes/análisis , Quelantes/química , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas , Etilenodiaminas , Cromatografía Líquida de Alta Presión/métodos
8.
Chemosphere ; 307(Pt 1): 135671, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35842048

RESUMEN

Numerous reports have described dithiocarbamate (DTC)-modified cellulose sorbents that can selectively separate metal ions from water. We have previously synthesized a novel sorbent modified with DTC containing N-heterocycles in the backbone for the selective removal of hazardous metal ions. The sorbent was found to partially dissolve and aggregate in solution, reducing its sorption capacity. In this study, to prepare the sorbent for use as a soli-phase extraction material for the removal of arsenite (AsIII) ions, we attempted to decrease the solubility of the sorbent. The sorbent was cross-linked with epoxy or complexed with iron, and the quantities of the modifiers were varied between 3.0 and 10 mol%. As a result, the iron-complexed sorbents were still partially soluble, and cross-linkage with 6.0 mol% of epoxy made the sorbent almost insoluble and dispersed in solution. This sorbent also exhibited the highest AsIII sorption performance among the sorbents synthesized in this study. Although DTC-modified polymers are reported to lose their sorption capability after storage at 40 °C, the sorbent was found to be thermally stable. The optimum contact time and pH for AsIII removal were 20 min and 3.0, respectively. The maximum sorption capacity of the epoxy-cross-linked sorbent, calculated from the Langmuir isotherm equation, was 600 µmol g-1 (45 mg g-1) at 25 °C. Additionally, the sorbent was highly selective toward AsIII compared with previously reported sorbents and capable of removing approximately 97% of AsIII from environmental water. In conclusion, cross-linking enhances the stability of the sorbents in solutions, which facilitates the removal of AsIII from environmental water.


Asunto(s)
Arsenitos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Celulosa , Concentración de Iones de Hidrógeno , Iones , Hierro , Polímeros , Agua
9.
J Hazard Mater ; 431: 128562, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248963

RESUMEN

The reclamation of geogenic As-contaminated excavated soils as construction additives can reduce the post-disposal impact on the ecosystem and space. Although retaining soil characteristics while reducing contaminant load is a challenging task, washing remediation with biodegradable surfactants or chelators is a promising alternative to non-biodegradable counterparts. In this study, newly synthesized biodegradable surfactants (SDG: sodium N-dodecanoyl-glycinate, SDBA: sodium N-dodecanoyl-ß-alaninate, SDGBH: sodium N-dodecanoyl-α,γ-glutamyl-bis-hydroxyprolinate, SDT: sodium N-dodecanoyl-taurinate, and DCPC: N-dodecyl-3-carbamoyl-pyridinium-chloride) and biodegradable chelators (EDDS: ethylenediamine N,N'-disuccinic acid, GLDA: L-glutamate-N, N'-diacetic acid, and HIDS: 3-hydroxy-2,2'-imino disuccinic acid) are evaluated for the remediation of As-contaminated soil. The operating variables, such as washing duration, solution pH, and surfactant or chelator concentration, are optimized for maximum As extraction. SDT shows the highest As-extraction efficiency irrespective of solution pH and surfactant variants, while HIDS is the superior chelator under acidic or alkaline conditions. A binary blend of SDT and HIDS is evaluated for As extraction under varying operating conditions. The SDT-HIDS binary blend demonstrates 6.9 and 1.6-times higher As-extraction rates than the SDT and HIDS-only washing, respectively, under acidic conditions. The proposed approach with a binary blend of a biodegradable surfactant and chelator is a green solution for recycling As-contaminated excavated soils for geotechnical applications.


Asunto(s)
Arsénico , Restauración y Remediación Ambiental , Isópodos , Metales Pesados , Contaminantes del Suelo , Animales , Quelantes , Ecosistema , Metales Pesados/análisis , Sodio , Suelo , Contaminantes del Suelo/análisis , Tensoactivos
10.
J Hazard Mater ; 424(Pt A): 127250, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34600387

RESUMEN

Speciation of selenium (Se) is typically carried out using a sophisticated technique such as ICP-MS after preconcentration using an adsorbent; however, the separation and preconcentration of inorganic Se has not been realized in the solutions containing high concentrations of SO42-. A dithiocarbamate-modified cellulose (DMC) was used in this study for the selective extraction and preconcentration of inorganic Se in wastewater, with a portable liquid electrode plasma-optical emission spectrometry (LEP-OES) being employed for quantification. DMC was found to selectively and quantitatively adsorb selenite (SeIV) over a wide range of pH (1.0-8.0); however, less than 3.0% of selenate (SeVI) was adsorbed in a pH range of 3.0-11. Quantitative extraction of SeIV was achieved even in the presence of 3.5 mol L-1 SO42-. The maximum sample volume from which 10 mg of DMC could quantitatively extract SeIV was found to be 500 mL. KOH (0.60 mL, 1.5 mol L-1) was found to quantitatively desorb SeIV retained on the adsorbent and yielded an enrichment factor of 833. The recovery of Se species from synthetic flue-gas desulfurization wastewater containing SeIV and SeVI at concentrations of 5.0 µmol L-1 was 96.2 ± 1.8% and 105.8 ± 1.8%, respectively.


Asunto(s)
Selenio , Celulosa , Electrodos , Análisis Espectral , Aguas Residuales
11.
J Hazard Mater ; 418: 126308, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329039

RESUMEN

Economic and ecological issues motivate the recovery of precious metals (PMs: Ag, Au, Pd, and Pt) from secondary sources. From the viewpoint of eco-friendliness and cost-effectiveness, biomass-based resins are superior to synthetic polymer-based resins for PM recovery. Herein, a detailed comparative study of bio-sorbent dithiocarbamate-modified cellulose (DMC) and synthetic polymer-based commercial resins (Q-10R, Lewatit MonoPlus TP 214, Diaion WA30, and Dowex 1X8) for PM recovery from waste resources was conducted. The performances and applicability of the selected resins were investigated in terms of sorption selectivity, effect of competing anions, sorption isotherms, impact of temperature, and PM extractability from industrial wastes. Although the sorption selectivity toward PMs in acidic solutions by DMC and other resins was comparable, the sorption efficiency of commercial resins was adversely affected by competing anions. The sorption of PMs fitted the Langmuir model for all the studied resins, except Q-10R, which followed the Freundlich model. The maximum sorption capacity of DMC was 2.2-42 times higher than those of the resins. Furthermore, the PM extraction performance of DMC from industrial wastes exceeded that of the commercial resins, with a sorption efficiency ≥99% and a DMC dosage of 5-40 times lower.


Asunto(s)
Metales , Agua , Adsorción , Celulosa , Concentración de Iones de Hidrógeno , Cinética
12.
J Hazard Mater ; 410: 124569, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33234400

RESUMEN

Recovery of precious metals (PMs: AuIII and PtIV) from waste resources is of high importance due to the environmental concern and imbalance in the supply-demand ratio. A new approach has been explored for the recovery of PM using earlier developed bio-adsorbent, dithiocarbamate-modified cellulose (DMC). The adsorbent exhibits excellent adsorption efficiency (~99%) over a wide range of pH (< 1-6) and high selectivity towards AuIII and PtIV extraction from acidic solutions ([H+]: ≥ 0.2 mol L-1). The adsorption capacity (mmol g-1; AuIII: 5.07, PtIV: 2.41) and rate to reach equilibrium (≤ 30 min) were significantly higher than most of the reported bio-adsorbents. The AuIII or PtIV, after captured in DMC, was subsequently recovered as Au0 and Pt0 (yield > 99%) via incineration. The protocol was verified using real waste samples containing AuIII and PtIV in a mixed matrix of base metal ions, and a quantitative (~100%) and selective extraction of AuIII and PtIV were observed. The proposed technique is more effective and straightforward than the typical adsorption-desorption-reduction based method, because of the advantages like no-use of toxic eluents, and no-addition of any reductants to collect the PMs in elemental form.

13.
J Chromatogr A ; 1630: 461528, 2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32950813

RESUMEN

Chelators, capable of creating soluble complexes with metals, may disrupt the natural speciation of metals in environmental matrices. Detection of environmental speciation of such complexes has remained challenging as obtaining the precise inherent nature of metal-chelator complexes is difficult by using routine techniques. Herein, we report a rapid and sensitive technique for the speciation analysis of complexes of five metal ions (Ni, Pb, Co, Fe and Ca) with two aminopolycarboxylate chelator variants, namely, EDTA (ethylenediaminetetraacetic acid) and EDDS (ethylenediamine-N,N'-disuccinic acid), including the simultaneous quantification of those complexes. EDTA is characterized as environmentally persistent among the chelators used in the current work whereas EDDS is biodegradable. The speciation analysis was performed using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The separation was achieved by using hydrophilic interaction liquid chromatographic column. The effect of various operating parameters on analytes such as mobile-phase composition, buffer concentrations and pH, sample diluents, sample injection volume, and column temperature on the peak shape and sensitivity were systematically optimized. The dilution was the only requirement for preparing the samples for analysis. The average relative uncertainty was 2.4% with the average precision (as RSD, n= 7) of 3.5%. For the metal-EDTA complexes, LOD range was 3 to 76 nmol L-1 with satisfactory recovery from a simulated mix matrix (recovery: 79-97%) and river water by standard addition (recovery: 82-94%). For metal-EDDS complexes, LOD range was 66 to 293 nmol L-1 with recovery from a simulated mix matrix (recovery: 56-97%) and river water by standard addition (recovery: 61-91%). The proposed method will be applicable in speciation analysis and simultaneous detection of metal-chelator complexes from environmental samples.

14.
Ecotoxicol Environ Saf ; 201: 110797, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32505760

RESUMEN

Microalgae play an important role in arsenic (As) bioaccumulation and biogeochemical cycling in marine ecosystems. Marine microalgal growth and As biotransformation processes depend on environmental factors, including salinity, temperature, and nutrient concentrations, and data in this regard are available in the literature. However, research on the integrated effects of environmental factors on marine diatom species remains scarce and unclear. Herein, salinity and temperature are both considered in combination to investigate their influence on As uptake, biotransformation, and photosynthetic efficiency (PE). Two strains of marine diatom species, Asteroplanus karianus and Skeletonema sp., were cultured in an f/2-based nutrient medium. Microalgae were cultured under various temperatures (5.0, 20, and 35 °C) and salinities (1.0‰, 10‰, 25‰, and 40‰) in association with As and phosphate-enriched (1.0 µmol L-1 of As(V) + 10 µmol L-1 of PO43-) or deficient (20 nmol L-1 of As(V) + 1.0 µmol L-1 of PO43-) conditions. For both species, maximum growth, As accumulation, biotransformation, and PE were recorded at 10 and 14 day of culture. Microalgal growth, As accumulation, biotransformation, and PE were maximum at 20 °C with salinities of 10‰ and 20‰. Cell shape was also observed to be good at optimal at this temperature (20 °C) and range of salinity (10‰ and 20‰). A conceptual model of integrated effects of environmental factors on growth and As accumulation and biotransformation activities by these marine microalgae has been proposed. This study contributed to the elucidation of the relationship between environmental factors and As biotransformation mechanisms, which may further provide significant insight about As remediation processes.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Arseniatos/toxicidad , Microalgas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Agua de Mar/química , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos/metabolismo , Arseniatos/metabolismo , Transporte Biológico , Biotransformación , Ecosistema , Microalgas/metabolismo , Salinidad , Temperatura , Contaminantes Químicos del Agua/metabolismo
15.
RSC Adv ; 10(50): 30238-30244, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35518251

RESUMEN

A series of cellulose derivatives bearing dialkyl dithiocarbamate (DTC) groups were synthesized. Their ability of sorption of arsenite (As(iii)) and heavy metals and their storage stability in the solid state were investigated. Among them, DTC-modified cellulose derived from l-proline showed the highest sorption capacity for As(iii) and heavy metals to selectively remove them from aqueous media. It also showed exellent storage stability in air at 40 °C.

16.
Sci Rep ; 9(1): 12074, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427705

RESUMEN

The biotransformation and detoxification mechanisms of arsenic (As) species have been active research topics because of their significance to environmental and human health. Biotransformation of As in phytoplankton has been extensively studied. However, how different growth phases of phytoplankton impact As biotransformation in them remains uncertain. This study investigated the biotransformation of As species in freshwater phytoplankton at different growth phases to ascertain at which growth phase different types of biotransformation occur. At the logarithmic growth phase, arsenate (AsV) (>90%) and arsenite (AsIII) (>80%) predominated in culture media when phytoplankton were exposed to 20 nmol L-1 and 1.0 µmol L-1 of AsV, respectively, and methylarsenic (methylAs) species were not detected in them at all. Intracellular As was mainly present in inorganic forms (iAs) at the logarithmic phase, while substantial amounts of organoarsenic (orgAs) species were detected at the stationary phase. At the stationary phase, AsV comprised the majority of the total As in culture media, followed by AsIII and methylAs, although the methylation of AsV occurred slowly at the stationary phase. Biotransformation of AsV into AsIII and As methylation inside phytoplankton cells occurred mainly at the logarithmic phase, while the biotransformation of As into complex orgAs compounds occurred at the stationary phase. Phytoplankton rapidly released iAs and methylAs species out of their cells at the logarithmic phase, while orgAs mostly remained inside their cells.

17.
Sci Rep ; 9(1): 10226, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308398

RESUMEN

Temperature and salinity effects on marine diatom species growth has been studied extensively; however, their effect on arsenic (As) biotransformation has been imprecise. This study reports the growth, and As biotransformation and speciation patterns at various temperatures and salinities of six marine diatom species: Asteroplanus karianus, Thalassionema nitzschioides, Nitzschia longissima, Skeletonema sp., Ditylum brightwellii, and Chaetoceros didymus. The growth rate and As biotransformation potentials of these species during three weeks of culture in f/2 based medium were significantly affected by wide temperature (0-35 °C) and salinity (0.3-50‰) ranges. Growth and As biotransformation were higher at optimum temperatures of 10-25 °C, and salinity of 10-35‰, whereas growth and arsenic biotransformation were lower at <5 °C and 5‰ and >25 °C and 35‰, respectively. The results showed that As(V) to As(III) biotransformation differed significantly (p < 0.05) between day 10 and 17. At optimum temperature and salinity levels, the cell size and As biotransformation were higher for all the species. A conceptual model on temperature and salinity effects on growth and As uptake and biotransformation mechanisms by these species has been proposed based on the findings of this study.


Asunto(s)
Arsénico/metabolismo , Diatomeas/metabolismo , Biotransformación/fisiología , Salinidad , Temperatura
18.
Chemosphere ; 228: 117-127, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31026632

RESUMEN

Algae accumulate and metabolize arsenic (As) and facilitate cycling and speciation of As in seawater. The laboratory-controlled macroalgal cultures were exposed to different molar ratios of As(V) and phosphate (P) in seawater for evaluating the uptake and metabolism of As, as a function of As(V) detoxification through biotransformation. Chlorophyll fluorescence of algal species was not significantly affected by the culture conditions (p > 0.05). Addition of 10 µM P positively reduce As stress, but different As(V)/P ratios significantly affect the growth rate (p < 0.05). Algae readily accumulated As(V) after the inoculation, transformed intracellularly, and released gradually into the medium along the incubation period, depending on As(V)/P molar ratios. Reduction and methylation were the leading processes of As(V) metabolism by Pyropia yezoensis, whereas Sargassum patens showed only the reduction. Sargassum horneri reduced As(V) under low level (0.1 µM), but both reduction and methylation were observed under a high level (1 µM). At the end of incubation, 0.17, 0.15, 0.1 µM of reduced metabolite (As[III]) were recorded from 1 µM of As(V)/P containing cultures of Sargassum horneri, Sargassum patens, and Pyropia yezoensis, respectively. On the other hand, 0.024 and 0.28 µM of methylated metabolite (DMAA[V]) were detected under the same culture conditions from Sargassum horneri and Pyropia yezoensis, respectively. The results also indicated that P in medium inhibits the intracellular uptake of As(V) and subsequent extrusion of biotransformed metabolites into the medium. These findings can help to understand the metabolic diversity of macroalgae species on As biogeochemistry in the marine environment.


Asunto(s)
Arsénico/metabolismo , Biotransformación , Inactivación Metabólica , Algas Marinas/metabolismo , Metilación , Fosfatos/metabolismo , Fosfatos/farmacología , Sargassum , Agua de Mar
19.
Chemosphere ; 222: 705-713, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30738313

RESUMEN

Freshwater and marine organisms are capable of metabolizing arsenic (As) efficiently and regulating the As biogeochemical cycles. In this study, Undaria pinnatifida was exposed to As(V) (0, 0.1, and 1 µM) and phosphate (P; 1 and 10 µM) in seawater under laboratory-controlled conditions for up to seven days to analyze As biotransformation. The growth rates and chlorophyll fluorescence of the alga were unaffected by As stress, and statistically insignificant differences were observed among the cultures (p > 0.05). As(V) was readily accumulated by this macroalga through phosphate transporters, transformed intracellularly, and excreted into the medium, depending on the As(V) to P molar ratios. The concentration of As(V) and biotransformed species As(III) and DMAA(V) varied significantly in the algal cultures on the basis of the exposure period (p < 0.05). The concentration of As(III) was initially higher but decreased with the incubation period, whereas the concentration of DMAA(V) increased gradually. At the end of the incubation, 0.04 and 0.32 µM DMAA(V) were recorded in the media containing 0.1 and 1 µM As(V) with a constant 1.0 µM P, respectively. The results also indicated that the cellular uptake of As(V) and subsequent release of DMAA(V) were inhibited by P in the medium. The biotransformation was consistent with the As(V) detoxification mechanism based on reduction and methylation, which was enhanced by the lower As(V) to P molar ratios. These findings can be helpful in understanding the contribution of macroalgae to As biogeochemistry in marine environments and the potential risks of As dietary intake.


Asunto(s)
Arsénico/metabolismo , Undaria/metabolismo , Biotransformación , Inactivación Metabólica , Metilación , Fosfatos/farmacología , Agua de Mar , Algas Marinas/metabolismo
20.
Talanta ; 194: 980-990, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609633

RESUMEN

The determination of aminopolycarboxylate chelators in environmental samples has remained an analytical challenge due to the structural similarities of these species and their minute concentrations in such matrices. Herein, we report a fast and sensitive technique for the determination of multiple chelator complexes in an aqueous matrix using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Eight chelators, including non-biodegradable (EDTA, EDTAOH, GEDTA, DPTAOH and DTPA) and biodegradable (EDDS, GLDA, and MGDA) variants were examined after complexation with CuII. The detection of these species using reverse-phase chromatography was compared with that achieved with hydrophilic interaction chromatography based on the corresponding peak resolution and retention time. The effect of varying the composition and pH of the mobile phase on the corresponding peak profiles and intensities for the chelator complexes was also evaluated. The CuII-derivatives of the chelators were individually detected under the optimized operating conditions. Relative to high-performance liquid chromatography equipped with a photodiode array detector, the developed UPLC-Q-TOF-MS technique provides rapid determination of chelator complexes in aqueous matrices with high sensitivity and superior peak resolution. The limit of detection ranged from 1.7-36 nmol L-1, and the limit of quantification ranged from 5.7-120 nmol L-1 for the eight chelator complexes in solution. The coefficients of determination (R2) were 0.962-0.999 for the chelators with an average relative uncertainty of 2.2%. The method was validated using a simulated mixed matrix and river water by standard addition (recovery: 83-100%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...