Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 56(50): 16028-16031, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29049848

RESUMEN

The direct observation of amorphous barium carbonate (ABC), which transforms into a previously unknown barium carbonate hydrate (herewith named gortatowskite) within a few hundred milliseconds of formation, is described. In situ X-ray scattering, cryo-, and low-dose electron microscopy were used to capture the transformation of nanoparticulate ABC into gortatowskite crystals, highly anisotropic sheets that are up to 1 µm in width, yet only about 10 nm in thickness. Recrystallization of gortatowskite to witherite starts within 30 seconds. We describe a bulk synthesis and report a first assessment of the composition, vibrational spectra, and structure of gortatowskite. Our findings indicate that transient amorphous and crystalline precursors can play a role in aqueous precipitation pathways that may often be overlooked owing to their extremely short lifetimes and small dimensions. However, such transient precursors may be integral to the formation of more stable phases.

2.
Nano Lett ; 17(4): 2165-2171, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28230376

RESUMEN

Thermal runaways triggered by the oxygen release from oxide cathode materials pose a major safety concern for widespread application of lithium ion batteries. Utilizing in situ aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) at high temperatures, we show that oxygen release from LixCoO2 cathode crystals is occurring at the surface of particles. We correlated this local oxygen evolution from the LixCoO2 structure with local phase transitions spanning from layered to spinel and then to rock salt structure upon exposure to elevated temperatures. Ab initio molecular dynamics simulations (AIMD) results show that oxygen release is highly dependent on LixCoO2 facet orientation. While the [001] facets are stable at 300 °C, oxygen release is observed from the [012] and [104] facets, where under-coordinated oxygen atoms from the delithiated structures can combine and eventually evolve as O2. The novel understanding that emerges from the present study provides in-depth insights into the thermal runaway mechanism of Li-ion batteries and can assist the design and fabrication of cathode crystals with the most thermally stable facets.

3.
Chem Sci ; 7(8): 4930-4939, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155141

RESUMEN

There has been intense interest in stabilizing the tetragonal phase of HfO2 since it is predicted to outperform the thermodynamically stable lower-symmetry monoclinic phase for almost every application where HfO2 has found use by dint of its higher dielectric constant, bandgap, and hardness. However, the monoclinic phase is much more thermodynamically stable and the tetragonal phase of HfO2 is generally accessible only at temperatures above 1720 °C. Classical models comparing the competing influences of bulk free energy and specific surface energy predict that the tetragonal phase of HfO2 ought to be stable at ultra-small dimensions below 4 nm; however, these size regimes have been difficult to access in the absence of synthetic methods that yield well-defined and monodisperse nanocrystals with precise control over size. In this work, we have developed a modified non-hydrolytic condensation method to precisely control the size of HfO2 nanocrystals with low concentrations of dopants by suppressing the kinetics of particle growth by cross-condensation with less-reactive precursors. This synthetic method enables us to stabilize tetragonal HfO2 while evaluating ideas for critical size at which surface energy considerations surpass the bulk free energy stabilization. The phase assignment has been verified by atomic resolution high angle annular dark field images acquired for individual nanocrystals.

4.
Nano Lett ; 15(11): 7179-88, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26457771

RESUMEN

There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122̅) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

5.
Nano Lett ; 15(5): 2998-3007, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25871572

RESUMEN

α-MnO2 is a promising material for Li-ion batteries and has unique tunneled structure that facilitates the diffusion of Li(+). The overall electrochemical performance of α-MnO2 is determined by the tunneled structure stability during its interaction with Li(+), the mechanism of which is, however, poorly understood. In this paper, a novel tetragonal-orthorhombic-tetragonal symmetric transition during lithiation of K(+)-stabilized α-MnO2 is observed using in situ transmission electron microscopy. Atomic resolution imaging indicated that 1 × 1 and 2 × 2 tunnels exist along c ([001]) direction of the nanowire. The morphology of a partially lithiated nanowire observed in the ⟨100⟩ projection is largely dependent on crystallographic orientation ([100] or [010]), indicating the existence of asynchronous expansion of α-MnO2's tetragonal unit cell along a and b lattice directions, which results in a tetragonal-orthorhombic-tetragonal (TOT) symmetric transition upon lithiation. Such a TOT transition is confirmed by diffraction analysis and Mn valence quantification. Density functional theory (DFT) confirms that Wyckoff 8h sites inside 2 × 2 tunnels are the preferred sites for Li(+) occupancy. The sequential Li(+) filling at 8h sites leads to asynchronous expansion and symmetry degradation of the host lattice as well as tunnel instability upon lithiation. These findings provide fundamental understanding for appearance of stepwise potential variation during the discharge of Li/α-MnO2 batteries as well as the origin for low practical capacity and fast capacity fading of α-MnO2 as an intercalated electrode.

6.
Nano Lett ; 14(9): 5301-7, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25158147

RESUMEN

In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.

7.
Nanotechnology ; 25(14): 145401, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24622159

RESUMEN

Gram quantities of both unfunctionalized and 1,4-benzenedithiol (BDT) functionalized zinc phosphide (Zn3P2) nanowire powders, synthesized using direct reaction of zinc and phosphorus, were hot-pressed into highly dense pellets (≥98% of the theoretical density) for the determination of their thermoelectric performance. It was deduced that mechanical flexibility of the nanowires is essential for consolidating them in randomly oriented fashion into dense pellets, without making any major changes to their morphologies. Electrical and thermal transport measurements indicated that the enhanced thermoelectric performance expected of individual Zn3P2 nanowires is still retained within large-scale nanowire assemblies. A maximum reduction of 28% in the thermal conductivity of Zn3P2 resulted from nanostructuring. Use of nanowire morphology also led to enhanced electrical conductivity in Zn3P2. Interface engineering of the nanowires in the pellets, accomplished by hot-pressing BDT functionalized nanowires, resulted in an increase on both the Seebeck coefficient and the electrical conductivity of the nanowire pellets. It is believed that filtering of low energy carriers resulting from the variation of the chemical compositions at the nanowire interfaces is responsible for this phenomenon. Overall, this study indicated that mechanical properties of the nanowires along with the chemical compositions of their surfaces play a hitherto unknown, but vital, role in realizing highly efficient bulk thermoelectric modules based on nanowires.

8.
ACS Nano ; 7(7): 6203-11, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23730945

RESUMEN

In the present work, taking advantage of aberration-corrected scanning transmission electron microscopy, we show that the dynamic lithiation process of anode materials can be revealed in an unprecedented resolution. Atomically resolved imaging of the lithiation process in SnO2 nanowires illustrated that the movement, reaction, and generation of b = [1[overline]1[overline]1] mixed dislocations leading the lithiated stripes effectively facilitated lithium-ion insertion into the crystalline interior. The geometric phase analysis and density functional theory simulations indicated that lithium ions initial preference to diffuse along the [001] direction in the {200} planes of SnO2 nanowires introduced the lattice expansion and such dislocation behaviors. At the later stages of lithiation, the Li-induced amorphization of rutile SnO2 and the formation of crystalline Sn and LixSn particles in the Li2O matrix were observed.


Asunto(s)
Electrodos , Litio/química , Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Compuestos de Estaño/química , Simulación por Computador , Ensayo de Materiales , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...