Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746202

RESUMEN

Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal was to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software is released as open source to enable broad community reuse and encourage novel applications.

2.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585941

RESUMEN

The hippocampal formation is critical for episodic memory, with area Cornu Ammonis 3 (CA3) a necessary substrate for auto-associative pattern completion. Recent theoretical and experimental evidence suggests that the formation and retrieval of cell assemblies enable these functions. Yet, how cell assemblies are formed and retrieved in a full-scale spiking neural network (SNN) of CA3 that incorporates the observed diversity of neurons and connections within this circuit is not well understood. Here, we demonstrate that a data-driven SNN model quantitatively reflecting the neuron type-specific population sizes, intrinsic electrophysiology, connectivity statistics, synaptic signaling, and long-term plasticity of the mouse CA3 is capable of robust auto-association and pattern completion via cell assemblies. Our results show that a broad range of assembly sizes could successfully and systematically retrieve patterns from heavily incomplete or corrupted cues after a limited number of presentations. Furthermore, performance was robust with respect to partial overlap of assemblies through shared cells, substantially enhancing memory capacity. These novel findings provide computational evidence that the specific biological properties of the CA3 circuit produce an effective neural substrate for associative learning in the mammalian brain.

3.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562736

RESUMEN

The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 hours to 2 minutes. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.

4.
ArXiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38495559

RESUMEN

Many fields, such as neuroscience, are experiencing the vast proliferation of cellular data, underscoring the need for organizing and interpreting large datasets. A popular approach partitions data into manageable subsets via hierarchical clustering, but objective methods to determine the appropriate classification granularity are missing. We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters. Here we present the corresponding protocol to classify cellular datasets by combining data-driven unsupervised hierarchical clustering with statistical testing. These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values, including molecular, physiological, and anatomical datasets. We demonstrate the protocol using cellular data from the Janelia MouseLight project to characterize morphological aspects of neurons.

5.
Elife ; 122024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345923

RESUMEN

Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Previously, Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression (Wheeler et al., 2015). Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.


Asunto(s)
Hipocampo , Roedores , Animales , Hipocampo/fisiología , Neuronas/fisiología , Redes Neurales de la Computación , Bases del Conocimiento
6.
Nat Commun ; 15(1): 1555, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378961

RESUMEN

We present a quantitative strategy to identify all projection neuron types from a given region with statistically different patterns of anatomical targeting. We first validate the technique with mouse primary motor cortex layer 6 data, yielding two clusters consistent with cortico-thalamic and intra-telencephalic neurons. We next analyze the presubiculum, a less-explored region, identifying five classes of projecting neurons with unique patterns of divergence, convergence, and specificity. We report several findings: individual classes target multiple subregions along defined functions; all hypothalamic regions are exclusively targeted by the same class also invading midbrain and agranular retrosplenial cortex; Cornu Ammonis receives input from a single class of presubicular axons also projecting to granular retrosplenial cortex; path distances from the presubiculum to the same targets differ significantly between classes, as do the path distances to distinct targets within most classes; the identified classes have highly non-uniform abundances; and presubicular somata are topographically segregated among classes. This study thus demonstrates that statistically distinct projections shed light on the functional organization of their circuit.


Asunto(s)
Axones , Giro Parahipocampal , Ratones , Animales , Axones/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Encéfalo
7.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37398455

RESUMEN

Spatial periodicity in grid cell firing has been interpreted as a neural metric for space providing animals with a coordinate system in navigating physical and mental spaces. However, the specific computational problem being solved by grid cells has remained elusive. Here, we provide mathematical proof that spatial periodicity in grid cell firing is the only possible solution to a neural sequence code of 2-D trajectories and that the hexagonal firing pattern of grid cells is the most parsimonious solution to such a sequence code. We thereby provide a teleological cause for the existence of grid cells and reveal the underlying nature of the global geometric organization in grid maps as a direct consequence of a simple local sequence code. A sequence code by grid cells provides intuitive explanations for many previously puzzling experimental observations and may transform our thinking about grid cells.

8.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37425693

RESUMEN

Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression. Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.

9.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070153

RESUMEN

SUMMARY: Neural morphology, the branching geometry of brain cells, is an essential cellular substrate of nervous system function and pathology. Despite the accelerating production of digital reconstructions of neural morphology, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and limit synergy. We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via NeuroMorpho.Org leads to a significant increase of citations to the original article, thus directly benefiting authors. The rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative applications, which accrue on average twice the citations of re-analyses of individual datasets. We also released an open-source citation tracking web-service allowing researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and tools can facilitate the recognition of shared data reuse for merit evaluations and funding decisions. AVAILABILITY AND IMPLEMENTATION: The application is available at: http://cng-nmo-dev3.orc.gmu.edu:8181/. The source code at https://github.com/HerveEmissah/nmo-authors-app and https://github.com/HerveEmissah/nmo-bibliometric-analysis.


Asunto(s)
Neurociencias , Neurociencias/métodos , Difusión de la Información , Neuronas , Programas Informáticos , Encéfalo
10.
Nat Commun ; 14(1): 7271, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949860

RESUMEN

Comprehensive quantification of neuronal architectures underlying anatomical brain connectivity remains challenging. We introduce a method to identify distinct axonal projection patterns from a source to a set of target regions and the count of neurons with each pattern. A source region projecting to n targets could have 2n-1 theoretically possible projection types, although only a subset of these types typically exists. By injecting uniquely labeled retrograde tracers in k target regions (k < n), one can experimentally count the cells expressing different color combinations in the source region. The neuronal counts for different color combinations from n-choose-k experiments provide constraints for a model that is robustly solvable using evolutionary algorithms. Here, we demonstrate this method's reliability for 4 targets using simulated triple injection experiments. Furthermore, we illustrate the experimental application of this framework by quantifying the projections of male mouse primary motor cortex to the primary and secondary somatosensory and motor cortices.


Asunto(s)
Axones , Neuronas , Ratones , Masculino , Animales , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Neuronas/fisiología , Encéfalo , Corteza Somatosensorial
11.
Nat Commun ; 14(1): 7429, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973857

RESUMEN

Digital reconstructions provide an accurate and reliable way to store, share, model, quantify, and analyze neural morphology. Continuous advances in cellular labeling, tissue processing, microscopic imaging, and automated tracing catalyzed a proliferation of software applications to reconstruct neural morphology. These computer programs typically encode the data in custom file formats. The resulting format heterogeneity severely hampers the interoperability and reusability of these valuable data. Among these many alternatives, the SWC file format has emerged as a popular community choice, coalescing a rich ecosystem of related neuroinformatics resources for tracing, visualization, analysis, and simulation. This report presents a standardized specification of the SWC file format. In addition, we introduce xyz2swc, a free online service that converts all 26 reconstruction formats (and 72 variations) described in the scientific literature into the SWC standard. The xyz2swc service is available open source through a user-friendly browser interface ( https://neuromorpho.org/xyz2swc/ui/ ) and an Application Programming Interface (API).


Asunto(s)
Ecosistema , Programas Informáticos , Simulación por Computador , Neuronas , Publicaciones
12.
Sci Adv ; 9(41): eadf3771, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824619

RESUMEN

Quantifying neuron morphology and distribution at the whole-brain scale is essential to understand the structure and diversity of cell types. It is exceedingly challenging to reuse recent technologies of single-cell labeling and whole-brain imaging to study human brains. We propose adaptive cell tomography (ACTomography), a low-cost, high-throughput, and high-efficacy tomography approach, based on adaptive targeting of individual cells. We established a platform to inject dyes into cortical neurons in surgical tissues of 18 patients with brain tumors or other conditions and one donated fresh postmortem brain. We collected three-dimensional images of 1746 cortical neurons, of which 852 neurons were reconstructed to quantify local dendritic morphology, and mapped to standard atlases. In our data, human neurons are more diverse across brain regions than by subject age or gender. The strong stereotypy within cohorts of brain regions allows generating a statistical tensor field of neuron morphology to characterize anatomical modularity of a human brain.


Asunto(s)
Mapeo Encefálico , Neuronas , Humanos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagenología Tridimensional , Cabeza
13.
Cognit Comput ; 15(4): 1190-1210, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37663748

RESUMEN

Hippocampal area CA3 performs the critical auto-associative function underlying pattern completion in episodic memory. Without external inputs, the electrical activity of this neural circuit reflects the spontaneous spiking interplay among glutamatergic pyramidal neurons and GABAergic interneurons. However, the network mechanisms underlying these resting-state firing patterns are poorly understood. Leveraging the Hippocampome.org knowledge base, we developed a data-driven, large-scale spiking neural network (SNN) model of mouse CA3 with 8 neuron types, 90,000 neurons, 51 neuron-type specific connections, and 250,000,000 synapses. We instantiated the SNN in the CARLsim4 multi-GPU simulation environment using the Izhikevich and Tsodyks-Markram formalisms for neuronal and synaptic dynamics, respectively. We analyzed the resultant population activity upon transient activation. The SNN settled into stable oscillations with a biologically plausible grand-average firing frequency, which was robust relative to a wide range of transient activation. The diverse firing patterns of individual neuron types were consistent with existing knowledge of cell type-specific activity in vivo. Altered network structures that lacked neuron- or connection-type specificity were neither stable nor robust, highlighting the importance of neuron type circuitry. Additionally, external inputs reflecting dentate mossy fibers shifted the observed rhythms to the gamma band. We freely released the CARLsim4-Hippocampome framework on GitHub to test hippocampal hypotheses. Our SNN may be useful to investigate the circuit mechanisms underlying the computational functions of CA3. Moreover, our approach can be scaled to the whole hippocampal formation, which may contribute to elucidating how the unique neuronal architecture of this system subserves its crucial cognitive roles.

14.
Brain Inform ; 10(1): 23, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684527

RESUMEN

The increasing number of peer-reviewed publications constitutes a challenge for biocuration. For example, NeuroMorpho.Org, a sharing platform for digital reconstructions of neural morphology, must evaluate more than 6000 potentially relevant articles per year to identify data of interest. Here, we describe a tool that uses natural language processing and deep learning to assess the likelihood of a publication to be relevant for the project. The tool automatically identifies articles describing digitally reconstructed neural morphologies with high accuracy. Its processing rate of 900 publications per hour is not only amply sufficient to autonomously track new research, but also allowed the successful evaluation of older publications backlogged due to limited human resources. The number of bio-entities found since launching the tool almost doubled while greatly reducing manual labor. The classification tool is open source, configurable, and simple to use, making it extensible to other biocuration projects.

15.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745378

RESUMEN

Motivation: Neural morphology, the branching geometry of neurons and glia in the nervous system, is an essential cellular substrate of brain function and pathology. Despite the accelerating production of digital reconstructions of neural morphology in laboratories worldwide, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and prevent researchers from building on others' work. Data sharing complements the development of computational resources and literature mining tools to accelerate scientific discovery. Results: We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via the NeuroMorpho.Org online repository leads to a significant increase of citations to the original article, thus directly benefiting the authors. Moreover, the rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative meta-analysis applications, which accrue on average twice the citations of re-analyses of individual datasets. We also designed and deployed an open-source citation tracking web-service that allows researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and the released tool can facilitate the recognition of shared data reuse for promotion and tenure considerations, merit evaluations, and funding decisions.

16.
Res Sq ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546984

RESUMEN

We conducted a large-scale study of whole-brain morphometry, analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We spatially registered 205 mouse brains and associated data from six Brain Initiative Cell Census Network (BICCN) data sources covering three major imaging modalities from five collaborative projects to the Allen Common Coordinate Framework (CCF) atlas, annotated 3D locations of cell bodies of 227,581 neurons, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1,891 neurons along with their axonal motifs, and detected 2.58 million putative synaptic boutons. Our analysis covers six levels of information related to neuronal populations, dendritic microenvironments, single-cell full morphology, sub-neuronal dendritic and axonal arborization, axonal boutons, and structural motifs, along with a quantitative characterization of the diversity and stereotypy of patterns at each level. We identified 16 modules consisting of highly intercorrelated brain regions in 13 functional brain areas corresponding to 314 anatomical regions in CCF. Our analysis revealed the dendritic microenvironment as a powerful method for delineating brain regions of cell types and potential subtypes. We also found that full neuronal morphologies can be categorized into four distinct classes based on spatially tuned morphological features, with substantial cross-areal diversity in apical dendrites, basal dendrites, and axonal arbors, along with quantified stereotypy within cortical, thalamic and striatal regions. The lamination of somas was found to be more effective in differentiating neuron arbors within the cortex. Further analysis of diverging and converging projections of individual neurons in 25 regions throughout the brain reveals branching preferences in the brain-wide and local distributions of axonal boutons. Overall, our study provides a comprehensive description of key anatomical structures of neurons and their types, covering a wide range of scales and features, and contributes to our understanding of neuronal diversity and its function in the mammalian brain.

17.
Res Sq ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398060

RESUMEN

Classifications of single neurons at brain-wide scale is a powerful way to characterize the structural and functional organization of a brain. We acquired and standardized a large morphology database of 20,158 mouse neurons, and generated a whole-brain scale potential connectivity map of single neurons based on their dendritic and axonal arbors. With such an anatomy-morphology-connectivity mapping, we defined neuron connectivity types and subtypes (both called "c-types" for simplicity) for neurons in 31 brain regions. We found that neuronal subtypes defined by connectivity in the same regions may share statistically higher correlation in their dendritic and axonal features than neurons having contrary connectivity patterns. Subtypes defined by connectivity show distinct separation with each other, which cannot be recapitulated by morphology features, population projections, transcriptomic, and electrophysiological data produced to date. Within this paradigm, we were able to characterize the diversity in secondary motor cortical neurons, and subtype connectivity patterns in thalamocortical pathways. Our finding underscores the importance of connectivity in characterizing the modularity of brain anatomy, as well as the cell types and their subtypes. These results highlight that c-types supplement conventionally recognized transcriptional cell types (t-types), electrophysiological cell types (e-types), and morphological cell types (m-types) as an important determinant of cell classes and their identities.

18.
Res Sq ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461601

RESUMEN

Long-range axonal projections are quintessential determinants of network connectivity, linking cellular organization and circuit architecture. Here we introduce a quantitative strategy to identify, from a given source region, all "projection neuron types" with statistically different patterns of anatomical targeting. We first validate the proposed technique with well-characterized data from layer 6 of the mouse primary motor cortex. The results yield two clusters, consistent with previously discovered cortico-thalamic and intra-telencephalic neuron classes. We next analyze neurons from the presubiculum, a less-explored region. Extending sparse knowledge from earlier retrograde tracing studies, we identify five classes of presubicular projecting neurons, revealing unique patterns of divergence, convergence, and specificity. We thus report several findings: (1) individual classes target multiple subregions along defined functions, such as spatial representation vs. sensory integration and visual vs. auditory input; (2) all hypothalamic regions are exclusively targeted by the same class also invading midbrain, a sharp subset of thalamic nuclei, and agranular retrosplenial cortex; (3) Cornu Ammonis, in contrast, receives input from the same presubicular axons projecting to granular retrosplenial cortex, also the purview of a single class; (4) path distances from the presubiculum to the same targets differ significantly between classes, as do the path distances to distinct targets within most classes, suggesting fine temporal coordination in activating distant areas; (5) the identified classes have highly non-uniform abundances, with substantially more neurons projecting to midbrain and hypothalamus than to medial and lateral entorhinal cortex; (6) lastly, presubicular soma locations are segregated among classes, indicating topographic organization of projections. This study thus demonstrates that classifying neurons based on statistically distinct axonal projection patterns sheds light on the functional organizational of their circuit.

19.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37390046

RESUMEN

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Asunto(s)
Encéfalo , Neurociencias , Animales , Humanos , Ratones , Ecosistema , Neuronas
20.
Netw Neurosci ; 7(1): 269-298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37339321

RESUMEN

We present a functionally relevant, quantitative characterization of the neural circuitry of Drosophila melanogaster at the mesoscopic level of neuron types as classified exclusively based on potential network connectivity. Starting from a large neuron-to-neuron brain-wide connectome of the fruit fly, we use stochastic block modeling and spectral graph clustering to group neurons together into a common "cell class" if they connect to neurons of other classes according to the same probability distributions. We then characterize the connectivity-based cell classes with standard neuronal biomarkers, including neurotransmitters, developmental birthtimes, morphological features, spatial embedding, and functional anatomy. Mutual information indicates that connectivity-based classification reveals aspects of neurons that are not adequately captured by traditional classification schemes. Next, using graph theoretic and random walk analyses to identify neuron classes as hubs, sources, or destinations, we detect pathways and patterns of directional connectivity that potentially underpin specific functional interactions in the Drosophila brain. We uncover a core of highly interconnected dopaminergic cell classes functioning as the backbone communication pathway for multisensory integration. Additional predicted pathways pertain to the facilitation of circadian rhythmic activity, spatial orientation, fight-or-flight response, and olfactory learning. Our analysis provides experimentally testable hypotheses critically deconstructing complex brain function from organized connectomic architecture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...