Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(12): e0030222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35670582

RESUMEN

Society faces the challenge of storing energy from sustainable sources in inexpensive, nontoxic ways that do not deplete the limited resources of Earth. In this regard, quinone redox flow batteries have been proposed as ideal; however, industrially used quinones have traditionally been synthesized from fossil fuels. Therefore, we investigated the production of phoenicin (compound 1), a deep violet dibenzoquinone produced by certain Penicillium species, for its industrial potential. Strains grew as surface cultures on customized growth media with varying production parameters, and phoenicin production was assessed by ultrahigh-performance liquid chromatography-diode array detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOF MS) analysis of the supernatant. Phoenicin production was reliant on the sucrose concentration, and by varying that, we produced 4.94 ± 0.56 g/L phoenicin on a Czapek yeast autolysate broth (CY)-based medium with Penicillium phoeniceum (CBS 249.32) as the production host, with 71.91% phoenicin purity in the resulting medium broth. Unexpectedly, metabolites corresponding to phoenicin polymers were tentatively identified in P. phoeniceum, of which the dimer (diphoenicin) was a major chromatographic peak. An MS-based metabolomics study was conducted on P. atrosanguineum using feature-based molecular networking and multivariate statistics, and it was found that few or no known secondary metabolites besides phoenicin were secreted into the growth medium. Finally, the effects of sucrose, sodium nitrate, and yeast extract (YE) in the growth medium were investigated in a 23 full factorial design. The results indicated an optimal sucrose concentration of 92.87 g/L on CY when NaNO3 and YE were fixed at 3 and 5 g/L, respectively. IMPORTANCE This work was undertaken to explore the production of fungal quinones in wild-type strains for use as electrolytes in redox flow batteries. As society converts energy production in a more sustainable direction, it becomes increasingly more important to store sustainable energy in smart ways. Conventional battery technologies imply the use of highly toxic, expensive, and rare metals; thus, quinone redox flow batteries have been proposed to be a desirable alternative. In this study, we explored the possibility of producing the fungal quinone phoenicin in Penicillium spp. by changing the growth parameters. The production of other secondary metabolites and known mycotoxins was also investigated in a metabolomics study. It was shown that phoenicin production was activated by optimizing the carbon concentration of the medium, resulting in high titers and purity of the single metabolite.


Asunto(s)
Micotoxinas , Penicillium , Benzoquinonas , Espectrometría de Masas/métodos , Micotoxinas/metabolismo , Penicillium/metabolismo , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA