Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viral Immunol ; 36(9): 579-592, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37797216

RESUMEN

Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.


Asunto(s)
COVID-19 , Inmunosenescencia , Humanos , Anciano , Inmunosenescencia/fisiología , Inflamación , SARS-CoV-2 , Envejecimiento/fisiología
2.
Int Immunopharmacol ; 84: 106471, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32305830

RESUMEN

The tumor microenvironment is a critical factor that enhances cancer progression, drug resistance, and failure of therapeutic approaches. Several cellular and non-cellular factors are involved in cancer promotion. Among the several cell populations in the tumor microenvironment, macrophages, as one of the most abundant innate immune cells within the tumor milieu, have attracted extensive attention among several researchers because of their critical role in innate pathophysiology of multiple disorders, as well as ovarian cancer. High plasticity and consequent high ability to adapt to environmental alternations by adjusting their cellular metabolism and immunological phenotype is the notable characteristic of macrophages. Therefore, the critical function of tumor-associated macrophages in ovarian cancer is highlighted in the growing body of recent studies. In this article, we will comprehensively focus on significant impacts of the macrophages on ovarian cancer progression, by discussing the role of macrophages as one of the fundamental immune cells present in tumor milieu, in metabolic reprogramming of transformed cells, and involvement of these cells in the ovarian cancer initiation, progression, invasion, and angiogenesis. Moreover, we will summarise recent studies evaluating the effects of targeting macrophages in ovarian cancer.


Asunto(s)
Neoplasias Ováricas/metabolismo , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Animales , Plasticidad de la Célula , Femenino , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Neovascularización Patológica/metabolismo , Neoplasias Ováricas/etiología , Neoplasias Ováricas/secundario , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...