Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37050073

RESUMEN

Parasitic flowering plants represent a diverse group of angiosperms, ranging from exotic species with limited distribution to prominent weeds, causing significant yield losses in agricultural crops. The major damage caused by them is related to the extraction of water and nutrients from the host, thus decreasing vegetative growth, flowering, and seed production. Members of the root parasites of the Orobanchaceae family and stem parasites of the genus Cuscuta are among the most aggressive and damaging weeds, affecting both monocotyledonous and dicotyledonous crops worldwide. Their control and eradication are hampered by the extreme seed longevity and persistence in soil, as well as their taxonomic position, which makes it difficult to apply selective herbicides not damaging to the hosts. The selection of resistant cultivars is among the most promising approaches to deal with this matter, although still not widely employed due to limited knowledge of the molecular mechanisms of host resistance and inheritance. The current review aims to summarize the available information on host resistance with a focus on agriculturally important parasitic plants and to outline the future perspectives of resistant crop cultivar selection to battle the global threat of parasitic plants.

2.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36768970

RESUMEN

Parasitic plants extract nutrients from the other plants to finish their life cycle and reproduce. The control of parasitic weeds is notoriously difficult due to their tight physical association and their close biological relationship to their hosts. Parasitic plants differ in their susceptible host ranges, and the host species differ in their susceptibility to parasitic plants. Current data show that adaptations of parasitic plants to various hosts are largely genetically determined. However, multiple cases of rapid adaptation in genetically homogenous parasitic weed populations to new hosts strongly suggest the involvement of epigenetic mechanisms. Recent progress in genome-wide analyses of gene expression and epigenetic features revealed many new molecular details of the parasitic plants' interactions with their host plants. The experimental data obtained in the last several years show that multiple common features have independently evolved in different lines of the parasitic plants. In this review we discuss the most interesting new details in the interaction between parasitic and host plants.


Asunto(s)
Epigenómica , Parásitos , Animales , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Parásitos/genética , Parásitos/genética , Genómica , Malezas/genética
3.
Biology (Basel) ; 11(9)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36138819

RESUMEN

The ultrastructure of antipodal cells of the Triticum aestivum embryo sac was studied at different stages of differentiation and programmed cell death. The importance of cell function in the antipodal complex is evidenced by the fact that it is fully formed before double fertilization, past the stages of proliferation of three initial cells, and several rounds of genome endoreduplication during differentiation. In this study, we showed that the actively synthesizing organelles, the granular reticulum, and Golgi apparatus, alter their structure during differentiation and death. The polymorphism of the shape of the mitochondria and plastids was demonstrated. For the first time, the actin filaments of the cytoskeleton and numerous multivesicular bodies associated with the plasma membrane were detected in the cytoplasm. The transfer of cytoplasm and organelles between antipodal cells and into the coenocyte of the endosperm was confirmed. DNA breaks and the release of cytochrome c at various stages of death were revealed. To understand the function of the antipodal cells, a quantitative PCR analysis of the expression of wheat genes involved in protective, antistress, and metabolic processes was carried out. We found that gene expression in the antipodal cell fraction was increased compared with that in the whole embryo sac. On the basis of the data, we assume that antipodal cells produce both nutrients and numerous antistress factors that ensure the normal development of the endosperm of the grain, which, in turn, further ensures the development of the embryo.

4.
Biochemistry (Mosc) ; 87(12): 1477-1486, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36717441

RESUMEN

At the first sight, the transcription factor Nrf2 as a master regulator of cellular antioxidant systems, and mitochondria as the main source of reactive oxygen species (ROS), should play the opposite roles in determining the pace of aging. However, since the causes of aging cannot be confined to the oxidative stress, the role of Nrf2 role cannot be limited to the regulation of antioxidant systems, and moreover, the role of mitochondria is not confined to the ROS production. In this review, we discussed only one aspect of this problem, namely, the molecular mechanisms of interaction between Nrf2 and mitochondria that influence the rate of aging and the lifespan. Experimental data accumulated so far show that the Nrf2 activity positively affects both the mitochondrial dynamics and mitochondrial quality control. Nrf2 influences the mitochondrial function through various mechanisms, e.g., regulation of nuclear genome-encoded mitochondrial proteins and changes in the balance of ROS or other metabolites that affect the functioning of mitochondria. In turn, multiple regulatory proteins functionally associated with the mitochondria affect the Nrf2 activity and even form mutual regulatory loops with Nrf2. We believe that these loops enable the fine-tuning of the cellular redox balance and, possibly, of the cellular metabolism as a whole. It has been commonly accepted for a long time that all mitochondrial regulatory signals are mediated by the nuclear genome-encoded proteins, whereas the mitochondrial genome encodes only a few respiratory chain proteins and two ribosomal RNAs. Relatively recently, mtDNA-encoded signal peptides have been discovered. In this review, we discuss the data on their interactions with the nuclear regulatory systems, first of all, Nrf2, and their possible involvement in the regulation of the aging rate. The interactions between regulatory cascades that link the programs ensuring the maintenance of cellular homeostasis and cellular responses to the oxidative stress are a significant part of both aging and anti-aging programs. Therefore, understanding these interactions will be of great help in searching for the molecular targets to counteract aging-associated diseases and aging itself.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Humanos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Mitocondrias/metabolismo , Envejecimiento
5.
Biochemistry (Mosc) ; 86(4): 433-448, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33941065

RESUMEN

This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a "regulating valve" that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.


Asunto(s)
Ritmo Circadiano , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Longevidad , Envejecimiento , Animales , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta/fisiología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de Señal
6.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050358

RESUMEN

Unlike animals, plants are immobile and could not actively escape the effects of aggressive environmental factors, such as pathogenic microorganisms, insect pests, parasitic plants, extreme temperatures, drought, and many others. To counteract these unfavorable encounters, plants have evolved very high phenotypic plasticity. In a rapidly changing environment, adaptive phenotypic changes often occur in time frames that are too short for the natural selection of adaptive mutations. Probably, some kind of epigenetic variability underlines environmental adaptation in these cases. Indeed, isogenic plants often have quite variable phenotypes in different habitats. There are examples of successful "invasions" of relatively small and genetically homogenous plant populations into entirely new habitats. The unique capability of quick environmental adaptation appears to be due to a high tendency to transmit epigenetic changes between plant generations. Multiple studies show that epigenetic memory serves as a mechanism of plant adaptation to a rapidly changing environment and, in particular, to aggressive biotic and abiotic stresses. In wild nature, this mechanism underlies, to a very significant extent, plant capability to live in different habitats and endure drastic environmental changes. In agriculture, a deep understanding of this mechanism could serve to elaborate more effective and safe approaches to plant protection.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Plantas/metabolismo , Estrés Fisiológico/genética , Aclimatación , Biomarcadores , Transducción de Señal
7.
Adv Exp Med Biol ; 1260: 107-122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32304032

RESUMEN

Parabiosis refers to the union of two living organisms by surgical operation, leading to the development of a shared circulatory system. It enables researchers to ask whether or not transmissible factors in the blood of one parabiont have physiological effects on its partner. In other words, parabiosis allows researchers to explore whether circulating factors in the bloodstream can alter tissue function. Heterochronic parabiosis, the pairing together of a young and aged organism, provides a unique experimental design to assess the effects of systemic milieu on the age-related processes. In the last 15 years, this experimental approach to study the aging processes at the whole organism level underwent a renaissance, with several studies demonstrating the rejuvenating effects of youthful systemic milieu on aging processes in the nervous system, skeletal muscle, heart, liver and other organs. The crucial question still mainly unanswered is the nature of circulating molecules that mediate "pro-youthful" effects of young and "pro-aging" effects of old system milieu.


Asunto(s)
Envejecimiento/fisiología , Enfermedad , Parabiosis , Envejecimiento/sangre , Animales , Corazón/fisiología , Hígado/fisiología , Músculo Esquelético/fisiología , Fenómenos Fisiológicos del Sistema Nervioso
8.
Methods Mol Biol ; 2138: 297-312, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32219758

RESUMEN

Changes in deoxyribonucleic acid (DNA) methylation are shown to occur with aging in mammals. Besides changes that seem to be essentially stochastic, methylation levels of certain CpG sites display a strong correlation with age. Collectively, methylation of such CpG sites could be used as "epigenetic clocks" to predict biological age. Numerous versions of the epigenetic clock have been proposed, all of them based on quantitative estimation of the methylation levels of individual CpG sites. Different methods were elaborated for quantitative measurements of DNA methylation, with the most reliable of these based on bisulfite treatment of DNA. We present here a protocol for assessment of the methylation levels of individual CpG sites in target DNA sequences by the direct sequencing of polymerase chain reaction (PCR) amplification products obtained from bisulfate-converted DNA.


Asunto(s)
Metilación de ADN/genética , Análisis de Secuencia de ADN/métodos , Sulfitos/química , Animales , Islas de CpG/genética , ADN/genética , Epigénesis Genética/genética , Estudios de Evaluación como Asunto , Mamíferos/genética , Reacción en Cadena de la Polimerasa/métodos
9.
Oxid Med Cell Longev ; 2019: 2901057, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781330

RESUMEN

Cardiolipin interacts with many proteins of the mitochondrial inner membrane and, together with cytochrome C and creatine kinase, activates them. It can be considered as an integrating factor for components of the mitochondrial respiratory chain, which provides for an efficient transfer of electrons and protons. The major, if not the only, factor of cardiolipin maturation is tafazzin. Variations of isoform proportions of this enzyme can cause severe diseases such as Barth syndrome. Using bioinformatic methods, we have found conserved C-terminal regions in many tafazzin isoforms and identified new mammalian species that acquired exon 5 as well as rare occasions of intron retention between exons 8 and 9. The regions in the C-terminal part arise from frameshifts relative to the full-length TAZ transcript after skipping exon 9 or retention of the intron between exons 10 and 11. These modifications demonstrate specific distribution among the orders of mammals. The dependence of the species maximum lifespan, body weight, and mitochondrial metabolic rate on the modifications has been demonstrated. Arguably, unconventional tafazzin isoforms provide for the optimal balance between the increased biochemical activity of mitochondria (resulting from specific environmental or nutritional conditions) and lifespan maintenance; and the functional role of such isoforms is linked to the modification of the primary and secondary structures at their C-termini.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Síndrome de Barth/genética , Síndrome de Barth/patología , Cardiolipinas/genética , Transporte de Electrón/genética , Humanos , Mitocondrias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/genética
10.
Adv Exp Med Biol ; 1178: 175-206, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31493228

RESUMEN

A global DNA hypomethylation and local changes in the methylation levels of specific DNA loci occur during aging in mammals. Global hypomethylation mainly affects highly methylated repeat sequences, such as transposable elements; it is an essentially stochastic process usually referred to as "epigenetic drift." Specific changes in DNA methylation affect various genome sequences and could be either hypomethylation or hypermethylation, but the prevailing tendencies are hypermethylation of promoter sequences associated with CpG islands and hypomethylation of CpG poor genes. Methylation levels of multiple CpG sites display a strong correlation to age common between individuals of the same species. Collectively, methylation of such CpG sites could be used as "epigenetic clocks" to predict biological age. Furthermore, the discrepancy between epigenetic and chronological ages could be predictive of all-cause mortality and multiple age-associated diseases. Random changes in DNA methylation (epigenetic drift) could also affect the aging phenotype, causing accidental changes in gene expression and increasing the transcriptional noise between cells of the same tissue. Both effects could become detrimental to tissue functioning and cause a gradual decline in organ function during aging. Strong evidence shows that epigenetic systems contribute to lifespan control in various organisms. Similar to other cell systems, the epigenome is prone to gradual degradation due to the genome damage, stressful agents and other aging factors. However, unlike mutations and many other hallmarks of aging, age-related epigenetic changes could be fully or partially reversed to a "young" state.


Asunto(s)
Envejecimiento , Epigénesis Genética , Marcadores Genéticos , Envejecimiento/genética , Animales , Islas de CpG/genética , Metilación de ADN , Epigenómica , Marcadores Genéticos/genética , Longevidad
11.
Front Genet ; 10: 455, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156709

RESUMEN

The Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by mutations of the LMNA gene leading to increased production of a partially processed form of the nuclear fibrillar protein lamin A - progerin. Progerin acts as a dominant factor that leads to multiple morphological anomalies of cell nuclei and disturbances in heterochromatin organization, mitosis, DNA replication and repair, and gene transcription. Progerin-positive cells are present in primary fibroblast cultures obtained from the skin of normal donors at advanced ages. These cells display HGPS-like defects in nuclear morphology, decreased H3K9me3 and HP1, and increased histone H2AX phosphorylation marks of the DNA damage loci. Inhibition of progerin production in cells of aged non-HGPS donors in vivo increases the proliferative activity, H3K9me3, and HP1, and decreases the senescence markers p21, IGFBP3, and GADD45B to the levels of young donor cells. Thus, progerin-dependent mechanisms act in natural aging. Excessive activity of the same mechanisms may well be the cause of premature aging in HGPS. Telomere attrition is widely regarded to be one of the primary hallmarks of aging. Progerin expression in normal human fibroblasts accelerates the loss of telomeres. Changes in lamina organization may directly affect telomere attrition resulting in accelerated replicative senescence and progeroid phenotypes. The chronological aging in normal individuals and the premature aging in HGPS patients are mediated by similar changes in the activity of signaling pathways, including downregulation of DNA repair and chromatin organization, and upregulation of ERK, mTOR, GH-IGF1, MAPK, TGFß, and mitochondrial dysfunction. Multiple epigenetic changes are common to premature aging in HGPS and natural aging. Recent studies showed that epigenetic systems could play an active role as drivers of both forms of aging. It may be suggested that these systems translate the effects of various internal and external factors into universal molecular hallmarks, largely common between natural and accelerated forms of aging. Drugs acting at both natural aging and HGPS are likely to exist. For example, vitamin D3 reduces the progerin production and alleviates most HGPS features, and also slows down epigenetic aging in overweight and obese non-HGPS individuals with suboptimal vitamin D status.

12.
Int J Mol Sci ; 20(12)2019 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-31234519

RESUMEN

Unlike in animals, the reproductive lineage cells in plants differentiate from within somatic tissues late in development to produce a specific haploid generation of the life cycle-male and female gametophytes. In flowering plants, the male gametophyte develops within the anthers and the female gametophyte-within the ovule. Both gametophytes consist of only a few cells. There are two major stages of gametophyte development-meiotic and post-meiotic. In the first stage, sporocyte mother cells differentiate within the anther (pollen mother cell) and the ovule (megaspore mother cell). These sporocyte mother cells undergo two meiotic divisions to produce four haploid daughter cells-male spores (microspores) and female spores (megaspores). In the second stage, the haploid spore cells undergo few asymmetric haploid mitotic divisions to produce the 3-cell male or 7-cell female gametophyte. Both stages of gametophyte development involve extensive epigenetic reprogramming, including siRNA dependent changes in DNA methylation and chromatin restructuring. This intricate mosaic of epigenetic changes determines, to a great extent, embryo and endosperm development in the future sporophyte generation.


Asunto(s)
Epigénesis Genética , Células Germinativas de las Plantas/crecimiento & desarrollo , Desarrollo de la Planta , Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas
13.
Curr Genomics ; 18(5): 385-407, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29081695

RESUMEN

INTRODUCTION: Hypermethylation of genes associated with promoter CpG islands, and hypomethylation of CpG poor genes, repeat sequences, transposable elements and intergenic genome sections occur during aging in mammals. Methylation levels of certain CpG sites display strict correlation to age and could be used as "epigenetic clock" to predict biological age. Multi-substrate deacetylases SIRT1 and SIRT6 affect aging via locus-specific modulations of chromatin structure and activity of multiple regulatory proteins involved in aging. Random errors in DNA methylation and other epigenetic marks during aging increase the transcriptional noise, and thus lead to enhanced phenotypic variation between cells of the same tissue. Such variation could cause progressive organ dysfunction observed in aged individuals. Multiple experimental data show that induction of NF-κB regulated gene sets occurs in various tissues of aged mammals. Upregulation of multiple miRNAs occurs at mid age leading to downregulation of enzymes and regulatory proteins involved in basic cellular functions, such as DNA repair, oxidative phosphorylation, intermediate metabolism, and others. CONCLUSION: Strong evidence shows that all epigenetic systems contribute to the lifespan control in various organisms. Similar to other cell systems, epigenome is prone to gradual degradation due to the genome damage, stressful agents, and other aging factors. But unlike mutations and other kinds of the genome damage, age-related epigenetic changes could be fully or partially reversed to a "young" state.

14.
Genome Announc ; 3(1)2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25573942

RESUMEN

Nocardioides simplex VKM Ac-2033D is an effective microbial catalyst for 3-ketosteroid 1(2)-dehydrogenation, and it is capable of effective reduction of carbonyl groups at C-17 and C-20, hydrolysis of acetylated steroids, and utilization of natural sterols. Here, the complete genome sequence is reported. An array of genes related to steroid metabolic pathways have been identified.

15.
Genome Announc ; 3(1)2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635031

RESUMEN

Mycobacterium sp. strain VKM Ac-1817D is capable of converting phytosterol into 9α-hydroxy androst-4-ene-3,17-dione (9-OH-AD), which is a valuable intermediate for the steroid pharmaceutical industry. Here, a complete genome sequence of the strain is reported. The genome consists of a single circular 6,324,222-bp chromosome with a G+C content of 66.2% and encodes approximately 6,000 CDSs, 54 tRNAs, and 6 rRNAs.

16.
Genome Announc ; 2(1)2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24435872

RESUMEN

Mycobacterium neoaurum strain VKM Ac-1815D produces 4-androstene-3,17-dione as a major compound from phytosterols. Here, we report the complete genome sequence of the strain. The genome consists of a single circular 5,438,190-bp chromosome, with a G+C content of 66.88%, containing 5,318 putative open reading frames (ORFs), 46 tRNAs, and 6 rRNAs. Arrays of cholesterol metabolism genes are randomly clustered throughout the chromosome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...