Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38672526

RESUMEN

The Biomolecules Editorial Office retracts the article, "Palmitic Acid Impedes Extravillous Trophoblast Activity by Increasing MRP1 Expression and Function" [...].

2.
Biomolecules ; 12(8)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36009056

RESUMEN

Normal function of placental extravillous trophoblasts (EVTs), which are responsible for uteroplacental vascular remodeling, is critical for adequate delivery of oxygen and nutrients to the developing fetus and normal fetal programming. Proliferation and invasion of spiral arteries by EVTs depends upon adequate levels of folate. Multidrug resistance-associated protein 1 (MRP1), which is an efflux transporter, is known to remove folate from these cells. We hypothesized that palmitic acid increases MRP1-mediated folate removal from EVTs, thereby interfering with EVTs' role in early placental vascular remodeling. HTR-8/SVneo and Swan-71 cells, first trimester human EVTs, were grown in the absence or presence of 0.5 mM and 0.7 mM palmitic acid, respectively, for 72 h. Palmitic acid increased ABCC1 gene expression and MRP1 protein expression in both cell lines. The rate of folate efflux from the cells into the media increased with a decrease in migration and invasion functions in the cultured cells. Treatment with N-acetylcysteine (NAC) prevented the palmitic acid-mediated upregulation of MRP1 and restored invasion and migration in the EVTs. Finally, in an ABCC1 knockout subline of Swan-71 cells, there was a significant increase in invasion and migration functions. The novel finding in this study that palmitic acid increases MRP1-mediated folate efflux provides a missing link that helps to explain how maternal consumption of saturated fatty acids compromises the in utero environment.


Asunto(s)
Placenta , Trofoblastos , Movimiento Celular/fisiología , Femenino , Ácido Fólico/metabolismo , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo , Remodelación Vascular
3.
Front Oncol ; 10: 574861, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163405

RESUMEN

The efficacy of anti-cancer drugs in patients can be attenuated by the development of multi-drug resistance (MDR) due to ATP-binding cassette (ABC) transporters overexpression. In this in vitro study, we determined the reversal efficacy of the epidermal growth factor receptor (EFGR) inhibitor, saptinib, in SW620 and SW720/Ad300 colon cancer cells and HEK293/ABCB1 cells which overexpress the ABCB1 transporter. Sapitinib significantly increased the efficacy of paclitaxel and doxorubicin in ABCB1 overexpressing cells without altering the expression or the subcellular location of the ABCB1 transporter. Sapitinib significantly increased the accumulation of [3H]-paclitaxel in SW620/AD300 cells probably by stimulating ATPase activity which could competitively inhibit the uptake of [3H]-paclitaxel. Furthermore, sapitinib inhibited the growth of resistant multicellular tumor spheroids (MCTS). The docking study indicated that sapitinib interacted with the efflux site of ABCB1 transporter by π-π interaction and two hydrogen bonds. In conclusion, our study suggests that sapitinib surmounts MDR mediated by ABCB1 transporter in cancer cells.

4.
Cancers (Basel) ; 12(9)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899268

RESUMEN

Multidrug resistance (MDR) associated with the overexpression of ABC transporters is one of the key causes of chemotherapy failure. Various compounds blocking the function and/or downregulating the expression of these transporters have been developed over the last few decades. However, their potency and toxicity have always been a concern. In this report, we found that BMS-599626 is a highly potent inhibitor of the ABCG2 transporter, inhibiting its efflux function at 300 nM. Our study repositioned BMS-599626, a highly selective pan-HER kinase inhibitor, as a chemosensitizer in ABCG2-overexpressing cell lines. As shown by the cytotoxicity assay results, BMS-599626, at noncytotoxic concentrations, sensitizes ABCG2-overexpressing cells to topotecan and mitoxantrone, two well-known substrates of ABCG2. The results of our radioactive drug accumulation experiment show that the ABCG2-overexpressing cells, treated with BMS-599626, had an increase in the accumulation of substrate chemotherapeutic drugs, as compared to their parental subline cells. Moreover, BMS-599626 did not change the protein expression or cell surface localization of ABCG2 and inhibited its ATPase activity. Our in-silico docking study also supports the interaction of BMS-599626 with the substrate-binding site of ABCG2. Taken together, these results suggest that administration of chemotherapeutic drugs, along with nanomolar concentrations (300 nM) of BMS-599626, may be effective against ABCG2-mediated MDR in clinical settings.

5.
Drug Discov Today ; 24(10): 2086-2095, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31173912

RESUMEN

The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates a variety of cellular processes, influencing diverse pathological conditions including a variety of cancers. Accordingly, therapies that target mTOR as anticancer agents benefit patients in various clinical settings. It is therefore important to fully investigate mTOR signaling at a molecular level and corresponding mTOR inhibitors to identify additional clinical opportunities of targeting mTOR in cancers. In this review, we introduce the function and regulation of the mTOR signaling pathway and organize and summarize the different roles of mTOR in cancers and a variety of mTOR inhibitors that can be used as anticancer agents. This article aims to enlighten and guide the development of mTOR-targeted anticancer agents in the future.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Humanos , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/fisiología
6.
Int J Mol Sci ; 20(2)2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30641875

RESUMEN

ABCB1 is one of the major drug efflux transporters that is known to cause multidrug resistance (MDR) in cancer patients receiving chemotherapy for the treatment of solid tumors and hematological malignancies. Inhibition of ABCB1 efflux function is important for maintaining the intracellular concentration of chemotherapeutic drugs. Here, we evaluated ciprofloxacin for its ability to reverse MDR caused by the overexpression of ABCB1. Cytotoxicity of ciprofloxacin was determined by the MTT assay. The chemosensitizing effects of ciprofloxacin were determined in combination with ABCB1 substrates. The intracellular accumulation and efflux of ABCB1 substrates was measured by a scintillation counter, and protein expression was determined by the Western blotting. Vanadate-sensitive ATPase assay was performed to determine the effect of ciprofloxacin on the ATPase activity of ABCB1, and docking analysis was done to determine the interaction of ciprofloxacin with ABCB1. Ciprofloxacin significantly potentiated the cytotoxic effects of ABCB1 substrates in ABCB1-overexpressing cells. Furthermore, ciprofloxacin increased the intracellular accumulation and decreased the efflux of [³H]-paclitaxel without altering the expression of ABCB1. Ciprofloxacin stimulated the ATPase activity of ABCB1 in a concentration-dependent manner. Our findings showed that ciprofloxacin potently inhibits the ABCB1 efflux function and it has potential to be developed as a combination anticancer therapy.


Asunto(s)
Ciprofloxacina/farmacología , Neoplasias/genética , Paclitaxel/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Ciprofloxacina/química , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...