Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol ; 136(3): 425-443, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29725819

RESUMEN

Amyotrophic lateral sclerosis type 4 (ALS4) is a rare, early-onset, autosomal dominant form of ALS, characterized by slow disease progression and sparing of respiratory musculature. Dominant, gain-of-function mutations in the senataxin gene (SETX) cause ALS4, but the mechanistic basis for motor neuron toxicity is unknown. SETX is a RNA-binding protein with a highly conserved helicase domain, but does not possess a low-complexity domain, making it unique among ALS-linked disease proteins. We derived ALS4 mouse models by expressing two different senataxin gene mutations (R2136H and L389S) via transgenesis and knock-in gene targeting. Both approaches yielded SETX mutant mice that develop neuromuscular phenotypes and motor neuron degeneration. Neuropathological characterization of SETX mice revealed nuclear clearing of TDP-43, accompanied by TDP-43 cytosolic mislocalization, consistent with the hallmark pathology observed in human ALS patients. Postmortem material from ALS4 patients exhibited TDP-43 mislocalization in spinal cord motor neurons, and motor neurons from SETX ALS4 mice displayed enhanced stress granule formation. Immunostaining analysis for nucleocytoplasmic transport proteins Ran and RanGAP1 uncovered nuclear membrane abnormalities in the motor neurons of SETX ALS4 mice, and nuclear import was delayed in SETX ALS4 cortical neurons, indicative of impaired nucleocytoplasmic trafficking. SETX ALS4 mice thus recapitulated ALS disease phenotypes in association with TDP-43 mislocalization and provided insight into the basis for TDP-43 histopathology, linking SETX dysfunction to common pathways of ALS motor neuron degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Neuronas Motoras/patología , Degeneración Nerviosa/genética , ARN Helicasas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , ADN Helicasas , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Masculino , Ratones , Neuronas Motoras/metabolismo , Enzimas Multifuncionales , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Fenotipo , ARN Helicasas/metabolismo
2.
Cell Rep ; 16(7): 1903-14, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27498874

RESUMEN

Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Envejecimiento/genética , Proteínas Portadoras/genética , Resistencia a la Insulina/genética , Obesidad/genética , Fosfoproteínas/genética , Proteínas Adaptadoras Transductoras de Señales , Tejido Adiposo Blanco/patología , Envejecimiento/patología , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Dieta Alta en Grasa/efectos adversos , Factores Eucarióticos de Iniciación , Femenino , Regulación de la Expresión Génica , Humanos , Leptina/sangre , Leptina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Fosfoproteínas/metabolismo , Factores Sexuales , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transgenes , Triglicéridos/sangre
3.
J Clin Invest ; 125(8): 2952-64, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26121750

RESUMEN

Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) is a key downstream effector of mTOR complex 1 (mTORC1) that represses cap-dependent mRNA translation initiation by sequestering the translation initiation factor eIF4E. Reduced mTORC1 signaling is associated with life span extension and improved metabolic homeostasis, yet the downstream targets that mediate these benefits are unclear. Here, we demonstrated that enhanced 4E-BP1 activity in mouse skeletal muscle protects against age- and diet-induced insulin resistance and metabolic rate decline. Transgenic animals displayed increased energy expenditure; altered adipose tissue distribution, including reduced white adipose accumulation and preserved brown adipose mass; and were protected from hepatic steatosis. Skeletal muscle-specific 4E-BP1 mediated metabolic protection directly through increased translation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and enhanced respiratory function. Non-cell autonomous protection was through preservation of brown adipose tissue metabolism, which was increased in 4E-BP1 transgenic animals during normal aging and in a response to diet-induced type 2 diabetes. Adipose phenotypes may derive from enhanced skeletal muscle expression and secretion of the known myokine FGF21. Unlike skeletal muscle, enhanced adipose-specific 4E-BP1 activity was not protective but instead was deleterious in response to the same challenges. These findings indicate that regulation of 4E-BP1 in skeletal muscle may serve as an important conduit through which mTORC1 controls metabolism.


Asunto(s)
Envejecimiento/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Envejecimiento/genética , Envejecimiento/patología , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Factores Eucarióticos de Iniciación , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/patología , Obesidad/genética , Obesidad/patología , Especificidad de Órganos/genética , Consumo de Oxígeno/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfoproteínas/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Cell Metab ; 20(4): 626-38, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25295787

RESUMEN

Macroautophagy (hereafter autophagy) is the major pathway by which macromolecules and organelles are degraded. Autophagy is regulated by the mTOR signaling pathway-the focal point for integration of metabolic information, with mTORC1 playing a central role in balancing biosynthesis and catabolism. Of the various inputs to mTORC1, the amino acid sensing pathway is among the most potent. Based upon transcriptome analysis of neurons subjected to nutrient deprivation, we identified let-7 microRNA as capable of promoting neuronal autophagy. We found that let-7 activates autophagy by coordinately downregulating the amino acid sensing pathway to prevent mTORC1 activation. Let-7 induced autophagy in the brain to eliminate protein aggregates, establishing its physiological relevance for in vivo autophagy modulation. Moreover, peripheral delivery of let-7 anti-miR repressed autophagy in muscle and white fat, suggesting that let-7 autophagy regulation extends beyond CNS. Hence, let-7 plays a central role in nutrient homeostasis and proteostasis regulation in higher organisms.


Asunto(s)
Aminoácidos/metabolismo , Autofagia , MicroARNs/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Secuencia de Bases , Encéfalo/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Músculo Esquelético/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Alineación de Secuencia , Transducción de Señal
5.
Sci Transl Med ; 4(142): 142ra97, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22786682

RESUMEN

Huntington's disease (HD) is caused by CAG repeat expansions in the huntingtin (htt) gene, yielding proteins containing polyglutamine repeats that become misfolded and resist degradation. Previous studies demonstrated that mutant htt interferes with transcriptional programs coordinated by the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a regulator of mitochondrial biogenesis and oxidative stress. We tested whether restoration of PGC-1α could ameliorate the symptoms of HD in a mouse model. We found that PGC-1α induction virtually eliminated htt protein aggregation and ameliorated HD neurodegeneration in part by attenuating oxidative stress. PGC-1α promoted htt turnover and the elimination of protein aggregates by activating transcription factor EB (TFEB), a master regulator of the autophagy-lysosome pathway. TFEB alone was capable of reducing htt aggregation and neurotoxicity, placing PGC-1α upstream of TFEB and identifying these two molecules as important therapeutic targets in HD and potentially other neurodegenerative disorders caused by protein misfolding.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/prevención & control , Estrés Oxidativo/efectos de los fármacos , Péptidos/toxicidad , Transactivadores/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Enfermedad de Huntington/complicaciones , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenotipo , Estructura Cuaternaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción , Activación Transcripcional/genética , Expansión de Repetición de Trinucleótido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...