Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 15(1): 3344, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637492

RESUMEN

Coordinated cell interactions within the esophagus maintain homeostasis, and disruption can lead to eosinophilic esophagitis (EoE), a chronic inflammatory disease with poorly understood pathogenesis. We profile 421,312 individual cells from the esophageal mucosa of 7 healthy and 15 EoE participants, revealing 60 cell subsets and functional alterations in cell states, compositions, and interactions that highlight previously unclear features of EoE. Active disease displays enrichment of ALOX15+ macrophages, PRDM16+ dendritic cells expressing the EoE risk gene ATP10A, and cycling mast cells, with concomitant reduction of TH17 cells. Ligand-receptor expression uncovers eosinophil recruitment programs, increased fibroblast interactions in disease, and IL-9+IL-4+IL-13+ TH2 and endothelial cells as potential mast cell interactors. Resolution of inflammation-associated signatures includes mast and CD4+ TRM cell contraction and cell type-specific downregulation of eosinophil chemoattractant, growth, and survival factors. These cellular alterations in EoE and remission advance our understanding of eosinophilic inflammation and opportunities for therapeutic intervention.


Asunto(s)
Esofagitis Eosinofílica , Humanos , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/patología , Células Endoteliales/metabolismo , Interleucina-13 , Inflamación/genética
2.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38260392

RESUMEN

Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.

3.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37425718

RESUMEN

TP53 is the most frequently mutated gene across many cancers and is associated with shorter survival in lung adenocarcinoma (LUAD). To define how TP53 mutations affect the LUAD tumor microenvironment (TME), we constructed a multi-omic cellular and spatial tumor atlas of 23 treatment-naïve human lung tumors. We found that TP53 -mutant ( TP53 mut ) malignant cells lose alveolar identity and upregulate highly proliferative and entropic gene expression programs consistently across resectable LUAD patient tumors, genetically engineered mouse models, and cell lines harboring a wide spectrum of TP53 mutations. We further identified a multicellular tumor niche composed of SPP1 + macrophages and collagen-expressing fibroblasts that coincides with hypoxic, pro-metastatic expression programs in TP53 mut tumors. Spatially correlated angiostatic and immune checkpoint interactions, including CD274 - PDCD1 and PVR - TIGIT , are also enriched in TP53 mut LUAD tumors, which may influence response to checkpoint blockade therapy. Our methodology can be further applied to investigate mutation-specific TME changes in other cancers.

6.
Nature ; 619(7969): 348-356, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344597

RESUMEN

The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth.


Asunto(s)
Linfocitos B , Melanoma , Animales , Ratones , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Activación de Linfocitos , Melanoma/inmunología , Melanoma/patología , Melanoma/prevención & control , Linfocitos T/citología , Linfocitos T/inmunología , Citometría de Flujo , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Presentación de Antígeno , Receptores de Antígenos de Linfocitos B/genética , Análisis de Expresión Génica de una Sola Célula , Carga Tumoral , Interferón Tipo I
7.
Immunity ; 56(2): 444-458.e5, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36720220

RESUMEN

Crohn's disease (CD) is a chronic gastrointestinal disease that is increasing in prevalence worldwide. CD is multifactorial, involving the complex interplay of genetic, immune, and environmental factors, necessitating a system-level understanding of its etiology. To characterize cell-type-specific transcriptional heterogeneity in active CD, we profiled 720,633 cells from the terminal ileum and colon of 71 donors with varying inflammation status. Our integrated datasets revealed organ- and compartment-specific responses to acute and chronic inflammation; most immune changes were in cell composition, whereas transcriptional changes dominated among epithelial and stromal cells. These changes correlated with endoscopic inflammation, but small and large intestines exhibited distinct responses, which were particularly apparent when focusing on IBD risk genes. Finally, we mapped markers of disease-associated myofibroblast activation and identified CHMP1A, TBX3, and RNF168 as regulators of fibrotic complications. Altogether, our results provide a roadmap for understanding cell-type- and organ-specific differences in CD and potential directions for therapeutic development.


Asunto(s)
Enfermedad de Crohn , Humanos , Transcriptoma , Colon , Íleon , Inflamación/genética , Ubiquitina-Proteína Ligasas/genética
8.
bioRxiv ; 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36324805

RESUMEN

The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.

9.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902743

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Perfilación de la Expresión Génica , Humanos , Terapia Neoadyuvante , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Pronóstico , Transcriptoma/genética , Neoplasias Pancreáticas
10.
Nat Commun ; 13(1): 4398, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906236

RESUMEN

Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.


Asunto(s)
Retardo del Crecimiento Fetal , Trofoblastos , Animales , Comunicación Celular/genética , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Feto/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Ratones , Embarazo , Trofoblastos/metabolismo
11.
Cell ; 185(16): 2918-2935.e29, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35803260

RESUMEN

Neoadjuvant immune checkpoint blockade has shown promising clinical activity. Here, we characterized early kinetics in tumor-infiltrating and circulating immune cells in oral cancer patients treated with neoadjuvant anti-PD-1 or anti-PD-1/CTLA-4 in a clinical trial (NCT02919683). Tumor-infiltrating CD8 T cells that clonally expanded during immunotherapy expressed elevated tissue-resident memory and cytotoxicity programs, which were already active prior to therapy, supporting the capacity for rapid response. Systematic target discovery revealed that treatment-expanded tumor T cell clones in responding patients recognized several self-antigens, including the cancer-specific antigen MAGEA1. Treatment also induced a systemic immune response characterized by expansion of activated T cells enriched for tumor-infiltrating T cell clonotypes, including both pre-existing and emergent clonotypes undetectable prior to therapy. The frequency of activated blood CD8 T cells, notably pre-treatment PD-1-positive KLRG1-negative T cells, was strongly associated with intra-tumoral pathological response. These results demonstrate how neoadjuvant checkpoint blockade induces local and systemic tumor immunity.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Terapia Neoadyuvante , Neoplasias/terapia , Microambiente Tumoral
12.
Science ; 376(6594): eabl4290, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549429

RESUMEN

Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.


Asunto(s)
Núcleo Celular , Enfermedad , RNA-Seq , Biomarcadores , Núcleo Celular/genética , Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Especificidad de Órganos , Fenotipo , RNA-Seq/métodos
13.
Nature ; 603(7903): 926-933, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296864

RESUMEN

White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions.


Asunto(s)
Tejido Adiposo Blanco , Atlas como Asunto , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedades Metabólicas , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ratones , Obesidad/metabolismo
14.
Nature ; 598(7880): 327-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588693

RESUMEN

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea , Síndrome de Down/sangre , Síndrome de Down/inmunología , Feto/citología , Hematopoyesis , Sistema Inmunológico/citología , Linfocitos B/citología , Células Dendríticas/citología , Síndrome de Down/metabolismo , Síndrome de Down/patología , Células Endoteliales/patología , Eosinófilos/citología , Células Eritroides/citología , Granulocitos/citología , Humanos , Inmunidad , Células Mieloides/citología , Células del Estroma/citología
15.
Nat Med ; 27(3): 546-559, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33654293

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Asunto(s)
COVID-19/epidemiología , COVID-19/genética , Interacciones Huésped-Patógeno/genética , SARS-CoV-2/fisiología , Análisis de Secuencia de ARN/estadística & datos numéricos , Análisis de la Célula Individual/estadística & datos numéricos , Internalización del Virus , Adulto , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Catepsina L/genética , Catepsina L/metabolismo , Conjuntos de Datos como Asunto/estadística & datos numéricos , Demografía , Femenino , Perfilación de la Expresión Génica/estadística & datos numéricos , Humanos , Pulmón/metabolismo , Pulmón/virología , Masculino , Persona de Mediana Edad , Especificidad de Órganos/genética , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , Análisis de Secuencia de ARN/métodos , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Análisis de la Célula Individual/métodos
16.
Cell ; 184(5): 1281-1298.e26, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33592174

RESUMEN

T cells are critical effectors of cancer immunotherapies, but little is known about their gene expression programs in diffuse gliomas. Here, we leverage single-cell RNA sequencing (RNA-seq) to chart the gene expression and clonal landscape of tumor-infiltrating T cells across 31 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and IDH mutant glioma. We identify potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes. Analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 (encoding CD161) as a candidate inhibitory receptor. Accordingly, genetic inactivation of KLRB1 or antibody-mediated CD161 blockade enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other human cancers. Our work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immunotherapy targets.


Asunto(s)
Glioma/inmunología , Subfamilia B de Receptores Similares a Lectina de Células NK/genética , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glioma/genética , Células Asesinas Naturales/inmunología , Lectinas Tipo C/genética , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Receptores de Superficie Celular/genética , Análisis de la Célula Individual , Subgrupos de Linfocitos T/inmunología , Linfocitos T/citología , Escape del Tumor
17.
Mol Ther ; 28(12): 2577-2592, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32755564

RESUMEN

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have produced impressive outcomes for the treatment of B cell malignancies, but different products vary in kinetics, persistence, and toxicity profiles based on the co-stimulatory domains included in the CAR. In this study, we performed transcriptional profiling of bulk CAR T cell populations and single cells to characterize the transcriptional states of human T cells transduced with CD3ζ, 4-1BB-CD3ζ (BBζ), or CD28-CD3ζ (28ζ) co-stimulatory domains at rest and after activation by triggering their CAR or their endogenous T cell receptor (TCR). We identified a transcriptional signature common across CARs with the CD3ζ signaling domain, as well as a distinct program associated with the 4-1BB co-stimulatory domain at rest and after activation. CAR T cells bearing BBζ had increased expression of human leukocyte antigen (HLA) class II genes, ENPP2, and interleukin (IL)-21 axis genes, and decreased PD1 compared to 28ζ CAR T cells. Similar to previous studies, we also found BBζ CAR CD8 T cells to be enriched in a central memory cell phenotype and fatty acid metabolism genes. Our data uncovered transcriptional signatures related to costimulatory domains and demonstrated that signaling domains included in CARs uniquely shape the transcriptional programs of T cells.


Asunto(s)
Ligando 4-1BB/química , Ligando 4-1BB/metabolismo , Ingeniería Celular/métodos , Dominios Proteicos/genética , ARN Citoplasmático Pequeño/genética , Receptores Quiméricos de Antígenos/genética , Transducción de Señal/genética , Linfocitos T/metabolismo , Transcriptoma , Células HEK293 , Humanos , Células K562 , RNA-Seq/métodos , Análisis de la Célula Individual , Transducción Genética
18.
Cancer Cell ; 38(2): 229-246.e13, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32707077

RESUMEN

Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of transcriptional states increases over time and is reproducible across tumors and mice. Cancer cells progressively adopt alternate lineage identities, computationally predicted to be mediated through a common transitional, high-plasticity cell state (HPCS). Accordingly, HPCS cells prospectively isolated from mouse tumors and human patient-derived xenografts display high capacity for differentiation and proliferation. The HPCS program is associated with poor survival across human cancers and demonstrates chemoresistance in mice. Our study reveals a central principle underpinning intra-tumoral heterogeneity and motivates therapeutic targeting of the HPCS.


Asunto(s)
Plasticidad de la Célula/genética , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Células Madre Neoplásicas/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/citología , Heterogeneidad Genética , Humanos , Neoplasias Pulmonares/patología , Ratones , Análisis de la Célula Individual/métodos , Transcriptoma/genética
19.
Cancer Cell ; 38(1): 44-59.e9, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32663469

RESUMEN

Ependymoma is a heterogeneous entity of central nervous system tumors with well-established molecular groups. Here, we apply single-cell RNA sequencing to analyze ependymomas across molecular groups and anatomic locations to investigate their intratumoral heterogeneity and developmental origins. Ependymomas are composed of a cellular hierarchy initiating from undifferentiated populations, which undergo impaired differentiation toward three lineages of neuronal-glial fate specification. While prognostically favorable groups of ependymoma predominantly harbor differentiated cells, aggressive groups are enriched for undifferentiated cell populations. The delineated transcriptomic signatures correlate with patient survival and define molecular dependencies for targeted treatment approaches. Taken together, our analyses reveal a developmental hierarchy underlying ependymomas relevant to biological and clinical behavior.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Ependimoma/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Diferenciación Celular/genética , Proliferación Celular/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/terapia , Niño , Ependimoma/patología , Ependimoma/terapia , Genómica/métodos , Humanos , Neuronas/metabolismo , Neuronas/patología , Pronóstico , Análisis de Supervivencia
20.
Nat Methods ; 17(8): 793-798, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32719530

RESUMEN

Massively parallel single-cell and single-nucleus RNA sequencing has opened the way to systematic tissue atlases in health and disease, but as the scale of data generation is growing, so is the need for computational pipelines for scaled analysis. Here we developed Cumulus-a cloud-based framework for analyzing large-scale single-cell and single-nucleus RNA sequencing datasets. Cumulus combines the power of cloud computing with improvements in algorithm and implementation to achieve high scalability, low cost, user-friendliness and integrated support for a comprehensive set of features. We benchmark Cumulus on the Human Cell Atlas Census of Immune Cells dataset of bone marrow cells and show that it substantially improves efficiency over conventional frameworks, while maintaining or improving the quality of results, enabling large-scale studies.


Asunto(s)
Nube Computacional/economía , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Biología Computacional/economía , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Análisis de Secuencia de ARN/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...