Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(21): 14904-14909, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38720986

RESUMEN

Novichoks is the latest known class of organophosphorus nerve agents to be developed. These highly lethal persistent agents, which exert their toxicity mainly through dermal exposure, pose new major challenges in mitigating their effect, mainly in respect to decontamination and medical countermeasures. Herein we report on the effective degradation of Novichok agents (A-230, A-232 and A-234) by hydroxamic acid salts. This class of α-nucleophiles, with emphasis on the FDA approved drug acetohydroxamic acid, were found to promote rapid hydrolysis of these extremely toxic agents. Using 31P NMR the Novichoks degradation rates were determined to be in time scale of minutes with the following order of reactivity A-230>A-232>A-234. The degradation efficiency was found to be dependent on the nucleophiles, their counter-cations and the specific solvent mixture used. Hence, these scavengers can serve as efficient and mild decontaminants in various scenarios including surfaces, dermal decontamination (as an alternative to active lotions such as the RSDL® kit) and also as a medical countermeasure in the form of "catch-up therapy".

2.
Anal Methods ; 16(12): 1736-1740, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38456247

RESUMEN

Highly sensitive chemiluminescence-based probes that effectively detect and differentiate between the extremely toxic real G- and V-type organophosphorus chemical warfare agents (OPCWAs) are presented. This straightforward approach does not require any instrumentation or light source; hence, it appears ideal for the future development of field colorimetric detectors.

3.
Arch Toxicol ; 97(10): 2771-2783, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37610476

RESUMEN

Low-volatility organophosphorus chemical warfare agents (OP CWAs) are cholinesterase inhibitors which easily absorb into the skin, leading to the formation of a dermal depot from which they slowly enter the bloodstream. This leads to sustained cholinergic hyperstimulation, which if untreated may lead to death. However, current available countermeasures are not adequate to neutralize the agent residing in the dermal depot. Accordingly, we evaluated the efficacy of the potassium salt of acetohydroxamic acid (880 mg/ml in DMSO/H2O 1:4, AHAK), as a potential "catch-up" therapy lotion intended to neutralize the dermal depot, by penetrating the skin and decomposing it before it reaches the bloodstream. To that end, we compared the clinical outcome following skin surface decontamination combined with antidotal treatment, to that following the same antidotal treatment combined with dermal application of AHAK at the site of VX exposure, against percutaneous poisoning by a lethal neat dose (4 mg/kg) of the low-volatility nerve agent VX, in an unanesthetized swine model. Following skin surface decontamination and antidotal treatment, recurrence of intoxication signs and a prolonged recovery time were observed. In contrast, similar antidotal treatment combined with dermal application of AHAK significantly reduced intoxication signs recurrences and accordingly medical supervision duration needed, paralleled by a significantly faster recovery of whole blood cholinesterase activity. An initial evaluation demonstrated the safety of prolonged whole-body AHAK application. Hence, the AHAK lotion may act as an efficient "catch-up" therapy against percutaneous poisoning by low-volatility OP CWAs, improving the clinical outcome and reducing the burden on medical staff.


Asunto(s)
Sustancias para la Guerra Química , Compuestos Organotiofosforados , Animales , Porcinos , Antídotos/uso terapéutico , Compuestos Organotiofosforados/toxicidad , Inhibidores de la Colinesterasa
4.
J Am Soc Mass Spectrom ; 33(8): 1541-1547, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35786979

RESUMEN

V-type nerve agents are among the most toxic organophosphorus chemical warfare agents, and they are under strict regulation and supervision by the OPCW (Organization for the Prohibition of Chemical Weapons). The V-type class of materials refers to a potentially large number of analogues and isomers. In order to expose instances of unfulfillment of the OPCW treaty, it is essential to have the ability to detect and identify "unknown" analogues of this family, even in the absence of an analytical standard. This work demonstrates a new automated tool for the detection and identification of V-type analogues, using high-resolution-accurate-mass LC-MS analysis, followed by "Compound Discoverer" software data processing. This software, originally developed for metabolism and metabolomics screening, is used here to automatically detect various V-type analogues by picking peaks and comparing them to "in-silico" calculated modifications made on a predefined basic V-backbone structure (according to the OPCW definitions for V-type agents). Subsequently, a complete structural elucidation for the proposed molecular formula is obtained by MS/MS data analysis of the suspected component, for both the V-type analogue (using ESI(+) analysis) as well as its hydrolysis product (using ESI(-) analysis) for a better elucidation of the phosphonate "head" structure. This method was found to be useful for the detection and identification of several "unknown" analogues, at low ng/mL levels in soil extracts.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Cromatografía Liquida/métodos , Agentes Nerviosos/análisis , Programas Informáticos , Espectrometría de Masas en Tándem/métodos
5.
Int J Pharm ; 603: 120689, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33965544

RESUMEN

Dermal exposure to low volatility organophosphorus chemical warfare agents (OP CWA) poses a great risk to the exposed person. Due to their lipophilic nature, these compounds rapidly absorb into the skin, leading to the formation of a "dermal reservoir" from which they slowly enter the bloodstream causing prolonged intoxication. Traditionally, strategies to counter the toxicity of such substances consist of chemical decontamination/physical removal of the residual agent from the skin surface (preferably as soon as possible following the exposure) and administration of antidotes in the case of intoxication signs. Hence, these strategies are unable to counter a substantial amount of the agent, which accumulates inthe dermal reservoir. More than a decade ago, the concept of a "catch-up therapy" intended to neutralize the dermal reservoir was suggested. Herein, we describe examples of potential "catch-up therapy" lotions - vehicles designed to deliver small nucleophilic molecules into the skin and potentially decompose the remaining CWA before it reaches the blood stream. Eleven nucleophilic compounds, based on approved drugs, were initially screened. They were then tested in various binary solutions, for their detoxification efficacy and degradation ability towards lipophilic OP CWA models such as dibutylphosphofluoridate and o-nitro-phenyl diphenyl phosphate, as well as the nerve agent VX, by means of kinetic 31P NMR and UV-Vis spectroscopy. Of these, the potassium and diethyl ammonium salts of acetohydroxamic acid (AHAK and AHA DEA) in (DMSO/H2O 1:4) were found to be the most active nucleophiles, hydrolyzing VX in practical time scales (t1/2 = 5.28 and 6.78 min, respectively). The vehicle solution DMSO/H2O 1:4 promoted the penetration of substantial amounts of AHA K and AHA DEA through excised pig skin in in-vitro studies, suggesting that such formulations may serve as useful CWA nucleophilic scavengers for both on and within -skin detoxification. These findings may pave the way to a more efficacious treatment against low volatility OP CWA percutaneous poisoning.


Asunto(s)
Sustancias para la Guerra Química , Compuestos Organotiofosforados , Preparaciones Farmacéuticas , Animales , Descontaminación , Porcinos
6.
Chem Commun (Camb) ; 56(95): 15040-15043, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33196072

RESUMEN

A novel SWIFT-based strategy for fluorimetric detection of practical amounts (minimal effective dose or lower) of chemical warfare agents is reported. This strategy employs readily available reagents and allows distinguishing between the V and G agents, as well as their discrimination from potential interferents.

7.
J Med Chem ; 62(11): 5628-5637, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31091098

RESUMEN

The effects of the CF2H moiety on H-bond (HB) acidity and lipophilicity of various compounds, when attached directly to an aromatic ring or to other functions like alkyls, ethers/thioethers, or electron-withdrawing groups, are discussed. It was found that the CF2H group acts as a HB donor with a strong dependence on the attached functional group ( A = 0.035-0.165). Regarding lipophilicity, the CF2H group may act as a more lipophilic bioisostere of OH but as a similar or less lipophilic bioisostere of SH and CH3, respectively, when attached to Ar or alkyl. In addition, the lipophilicity of ethers, sulfoxides, and sulfones is dramatically increased upon CH3/CF2H exchange at the α position. Interestingly, this exchange significantly affects not only the polarity and the volume of the solutes but also their HB-accepting ability, the main factors influencing log Poct. Accordingly, this study may be helpful in the rational design of drugs containing this moiety.


Asunto(s)
Fluorocarburos/química , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular
8.
Org Lett ; 19(12): 3039-3042, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28558230

RESUMEN

The synthesis and properties of a new class of anhydrous quaternary ammonium fluorides, based on the rigid skeleton azabicyclo[2.2.2]octane, is described. Compounds 2a-d were easily prepared by passing the corresponding ammonium iodides over fluoride-based resin followed by drying their hydrated form at 100 or 140 °C under reduced pressure. The stability (experimental and theoretical study), solubility, reactivity, and characterization by solution and solid-state MAS NMR are discussed.

9.
Beilstein J Org Chem ; 11: 1332-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26425187

RESUMEN

The synthesis of P-chirogenic (±)-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent.

10.
J Org Chem ; 80(10): 5176-88, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25901764

RESUMEN

The effects solvents have on fluoride-promoted heterogeneous hydrolysis and alcoholysis of various organo-phosphorus (OP) compounds on the surface of KF/Al2O3 are described. Solid-state magic angle spinning NMR analyses and SEM microscopy have shown that not only is the identity of the solvent important in these reactions but also its quantity. That is, minimal solvent amounts are favored and much more effective in such solid-supported reactions (and maybe generally) than those featuring solvent-free or excess solvent (>50 wt %) conditions. The addition of a minute quantity of the correct solvent (3-10 wt %, molar equivalent scale) avoids reagents leaching from the matrix, permits mobility (mass transport) of the reaction components and ensures their very high local concentration in close proximity to the solid-support large porous surface area. Accordingly, significant acceleration of reactions rates by orders of magnitude is obtained. Fascinatingly, even challenging phosphoesters with poor leaving groups, which were found to be very stable in the presence of solvent-free KF/Al2O3 or wetted with excess water, were efficiently hydrolyzed with a minute amount of this solvent.


Asunto(s)
Fluoruros/química , Compuestos Organofosforados/química , Solventes/química , Agua/química , Espectroscopía de Resonancia Magnética , Técnicas de Síntesis en Fase Sólida
11.
J Org Chem ; 77(22): 10042-9, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23083335

RESUMEN

Following our ongoing studies on the reactivity of the fluoride ion toward organophosphorus compounds, we established that the extremely toxic and environmentally persistent chemical warfare agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is exclusively and rapidly degraded to the nontoxic product EMPA (ethyl methylphosphonic acid) even in dilute aqueous solutions of fluoride. The unique role of the P-F bond formation in the reaction mechanism was explored using both experimental and computational mechanistic studies. In most cases, the "G-analogue" (O-ethyl methylphosphonofluoridate, Et-G) was observed as an intermediate. Noteworthy and of practical importance is the fact that the toxic side product desethyl-VX, which is formed in substantial quantities during the slow degradation of VX in unbuffered water, is completely avoided in the presence of fluoride. A computational study on a VX-model, O,S-diethyl methylphosphonothioate (1), clarifies the distinctive tendency of aqueous fluoride ions to react with such organophosphorus compounds. The facility of the degradation process even in dilute fluoride solutions is due to the increased reactivity of fluoride, which is caused by the significant low activation barrier for the P-F bond formation. In addition, the unique nucleophilicity of fluoride versus hydroxide toward VX, in contrast to their relative basicity, is discussed. Although the reaction outcomes were similar, much slower reaction rates were observed experimentally for the VX-model (1) in comparison to VX.


Asunto(s)
Compuestos Organotiofosforados/química , Agua/química , Fluoruros/química , Hidrólisis , Cinética , Modelos Teóricos
12.
J Org Chem ; 75(6): 1917-26, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20151695

RESUMEN

Potential energy surfaces for the nucleophilic displacements at phosphorus in dimethyl methyl-, chloromethyl-, dichloromethyl-, and trichloromethylphosphonates have been computed at the B3LYP/6-31+G* level of theory, using IEF-PCM to account for the solvent effect. The results reveal that sequential addition of chlorine substituents on the methyl phosphonates increases the stability of transition states and intermediates which facilitate P-C bond cleavage. Thus, while nonsubstituted dimethyl methylphosphonate and dimethyl chloromethylphosphonate may undergo exclusive P-O bond cleavage, the trichlorinated analogue exclusively undergoes P-C bond dissociation. Dichloromethylphosphonic acid derivatives were found to be borderline cases: while P-O fission is the preferred process, P-C scission might also be feasible. The increase in stability of the corresponding transition states and intermediates can account for the enhancement in the apicophilicity of the methyl ligand upon substitution with chlorine atoms.


Asunto(s)
Cloro/química , Ésteres/química , Compuestos Organofosforados/química , Fósforo/química , Teoría Cuántica , Carbono/química , Simulación por Computador , Modelos Moleculares , Oxígeno/química
13.
Chem Commun (Camb) ; (47): 5879-81, 2005 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-16317461

RESUMEN

Clean endocyclic C-O bond cleavage has been achieved in the reactions of 5-membered phosphate triesters with various nucleophiles.

14.
J Am Chem Soc ; 127(43): 15265-72, 2005 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-16248669

RESUMEN

A new general, synthetically simple, and safe method for the preparation of metal carbene complexes, which is based on diphenyl sulfonium salts as carbenoid precursors, has been developed, and its scope and applications were studied. In general, deprotonation of a sulfonium salt with a base results in a sulfur ylide, which, in turn, reacts with an appropriate metal precursor to give the corresponding metal carbene complex. Thus, starting from benzyldiphenylsulfonium salt, the complexes (PCX)Rh=CHPh (X = P, N) were prepared in quantitative yield. Syntheses of Grubbs' catalyst, (PCy(3))(2)Cl(2)Ru=CHPh, and of Werner's carbene, [Os(=CHPh)HCl(CO)(P(i)Pr(3))(2)], were achieved by this method. Novel trans-bisphosphine Rh and Ir carbenes, ((i)Pr(3)P)(2)(Cl)M=CHPh, which could not be prepared by other known methods, were synthesized by the sulfur ylide approach. The method is not limited to metal benzylidenes, as demonstrated by the preparation of the Ru vinyl-alkylidene, (PCy(3))(2)Cl(2)Ru=CH-CH=CH(2), methoxycarbonyl-alkylidene, (PCy(3))(2)Cl(2)Ru=CH(CO(2)Me), and alkylidene (PCy(3))(2)Cl(2)Ru=CH(CH(3)), (PCy(3))(2)Cl(2)Ru=CH(2) compounds. The problem of recycling of starting materials as well as the issue of facile purification of the product metal carbene complex were addressed by the synthesis of a polymer-supported diarylsulfide, the carrier of the carbenoid unit in the process. Based on the sulfur ylide route, a methodology for the synthesis of metallocarbenes anchored to a polymer via the carbene ligand, using a commercial Merrifield resin, was developed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...