Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 19(11): 2543-2552, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526290

RESUMEN

JOURNAL/nrgr/04.03/01300535-202419110-00034/figure1/v/2024-03-08T184507Z/r/image-tiff Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho-/-) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors' eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho-/- mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5-1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho-/- mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho-/- mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.

2.
bioRxiv ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38014168

RESUMEN

The limited regenerative potential of the optic nerve in adult mammals presents a major challenge for restoring vision after optic nerve trauma or disease. The mechanisms of this regenerative failure are not fully understood1,2. Here, through small-molecule and genetic screening for epigenetic modulators3, we identify DNA methyltransferase 3a (DNMT3a) as a potent inhibitor of axon regeneration in mouse and human retinal explants. Selective suppression of DNMT3a in retinal ganglion cells (RGCs) by gene targeting or delivery of shRNA leads to robust, full-length regeneration of RGC axons through the optic nerve and restoration of vision in adult mice after nerve crush injury. Genome-wide bisulfite and transcriptome profiling in combination with single nucleus RNA-sequencing of RGCs revealed selective DNA demethylation and reactivation of genetic programs supporting neuronal survival and axonal growth/regeneration by DNMT3a deficiency. This was accompanied by the suppression of gene networks associated with apoptosis and inflammation. Our results identify DNMT3a as the central orchestrator of an RGC-intrinsic mechanism that limits optic nerve regeneration. Suppressing DNMT3a expression in RGCs unlocks the epigenetic switch for optic nerve regeneration and presents a promising therapeutic avenue for effectively reversing vision loss resulted from optic nerve trauma or diseases.

3.
J Cell Biochem ; 124(10): 1530-1545, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37642194

RESUMEN

Electrical stimulation (ES) influences neural regeneration and functionality. We here investigate whether ES regulates DNA demethylation, a critical epigenetic event known to influence nerve regeneration. Retinal ganglion cells (RGCs) have long served as a standard model for central nervous system neurons, whose growth and disease development are reportedly affected by DNA methylation. The current study focuses on the ability of ES to rescue RGCs and preserve vision by modulating DNA demethylation. To evaluate DNA demethylation pattern during development, RGCs from mice at different stages of development, were analyzed using qPCR for ten-eleven translocation (TETs) and immunostained for 5 hydroxymethylcytosine (5hmc) and 5 methylcytosine (5mc). To understand the effect of ES on neurite outgrowth and DNA demethylation, cells were subjected to ES at 75 µAmp biphasic ramp for 20 min and cultured for 5 days. ES increased TETs mediated neurite outgrowth, DNA demethylation, TET1 and growth associated protein 43 levels significantly. Immunostaining of PC12 cells following ES for histone 3 lysine 9 trimethylation showed cells attained an antiheterochromatin configuration. Cultured mouse and human retinal explants stained with ß-III tubulin exhibited increased neurite growth following ES. Finally, mice subjected to optic nerve crush injury followed by ES exhibited improved RGCs function and phenotype as validated using electroretinogram and immunohistochemistry. Our results point to a possible therapeutic regulation of DNA demethylation by ES in neurons.

4.
Exp Eye Res ; 226: 109351, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539052

RESUMEN

α-Synuclein (α-Syn) is implicated in Parkinson's disease (PD), a neuromotor disorder with prominent visual symptoms. The underlying cause of motor dysfunction has been studied extensively, and is attributed to the death of dopaminergic neurons mediated in part by intracellular aggregation of α-Syn. The cause of visual symptoms, however, is less clear. Neuroretinal degeneration due to the presence of aggregated α-Syn has been reported, but the evidence is controversial. Other symptoms including those arising from primary open angle glaucoma (POAG) are believed to be the side-effects of medications prescribed for PD. Here, we explored the alternative hypothesis that dysfunction of α-Syn in the anterior eye alters the interaction between the actin cytoskeleton of trabecular meshwork (TM) cells with the extracellular matrix (ECM), impairing their ability to respond to physiological changes in intraocular pressure (IOP). A similar dysfunction in neurons is responsible for impaired neuritogenesis, a characteristic feature of PD. Using cadaveric human and bovine TM tissue and primary human TM cells as models, we report two main observations: 1) α-Syn is expressed in human and bovine TM cells, and significant amounts of monomeric and oligomeric α-Syn are present in the AH, and 2) primary human TM cells and human and bovine TM tissue endocytose extracellular recombinant monomeric and oligomeric α-Syn via the prion protein (PrPC), and upregulate fibronectin (FN) and α-smooth muscle actin (α-SMA), fibrogenic proteins implicated in POAG. Transforming growth factor ß2 (TGFß2), a fibrogenic cytokine implicated in ∼50% cases of POAG, is also increased, and so is RhoA-associated coiled-coil-containing protein kinase 1 (ROCK-1). However, silencing of α-Syn in primary human TM cells reduces FN, α-SMA, and ROCK-1 in the absence or presence of over-expressed active TGFß2, suggesting modulation of FN and ROCK-1 independent of, or upstream of TGFß2. These observations suggest that extracellular α-Syn modulates ECM proteins in the TM independently or via PrPC by activating the RhoA-ROCK pathway. These observations reveal a novel function of α-Syn in the anterior eye, and offer new therapeutic options.


Asunto(s)
Fibronectinas , Glaucoma de Ángulo Abierto , Animales , Bovinos , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacología , Células Cultivadas , Fibronectinas/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Malla Trabecular/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo
5.
BMC Ophthalmol ; 22(1): 490, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522696

RESUMEN

PURPOSE: Transcorneal electrical stimulation (TcES) is increasingly applied as a therapy for preserving and improving vision in retinal neurodegenerative and ischemic disorders. However, a common complaint about TcES is its induction of eye pain and dryness in the clinic, while the mechanisms remain unknown. METHOD: TcES or transpalpebral ES (TpES) was conducted in C57BL6j mice for 14 days. The contralateral eyes were used as non-stimulated controls. Levels of intracellular [Ca2+] ([Ca2+]i) were assessed by Fura-2AM. The conductance resistances of the eye under various ES conditions were measured in vivo by an oscilloscope. RESULTS: Although TcES did not affect tear production, it significantly induced damage to the ocular surface, as revealed by corneal fluorescein staining that was accompanied by significantly decreased mucin (MUC) 4 expression compared to the control. Similar effects of ES were detected in cultured primary corneal epithelium cells, showing decreased MUC4 and ZO-1 levels after the ES in vitro. In addition, TcES decreased secretion of MUC5AC from the conjunctiva in vivo, which was also corroborated in goblet cell cultures, where ES significantly attenuated carbachol-induced [Ca2+]i increase. In contrast to TcES, transpalpebral ES (TpES) did not induce corneal fluorescein staining while significantly increasing tear production. Importantly, the conductive resistance from orbital skin to the TpES was significantly smaller than that from the cornea to the retina in TcES. CONCLUSION: TcES, but not TpES, induces corneal epithelial damage in mice by disrupting mucin homeostasis. TpES thus may represent a safer and more effective ES approach for treating retinal neurodegeneration clinically.


Asunto(s)
Síndromes de Ojo Seco , Células Caliciformes , Ratones , Animales , Células Caliciformes/metabolismo , Conjuntiva/metabolismo , Estimulación Eléctrica , Fluoresceína/metabolismo , Homeostasis , Lágrimas/metabolismo , Síndromes de Ojo Seco/terapia , Síndromes de Ojo Seco/metabolismo
6.
Front Cell Dev Biol ; 10: 980775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158207

RESUMEN

Non-invasive electric stimulation (ES) employing a low-intensity electric current presents a potential therapeutic modality that can be applied for treating retinal and brain neurodegenerative disorders. As neurons are known to respond directly to ES, the effects of ES on glia cells are poorly studied. A key question is if ES directly mediates microglial function or modulates their activity merely via neuron-glial signaling. Here, we demonstrated the direct effects of ES on microglia in the BV-2 cells-an immortalized murine microglial cell line. The low current ES in a biphasic ramp waveform, but not that of rectangular or sine waveforms, significantly suppressed the motility and migration of BV-2 microglia in culture without causing cytotoxicity. This was associated with diminished cytoskeleton reorganization and microvilli formation in BV-2 cultures, as demonstrated by immunostaining of cytoskeletal proteins, F-actin and ß-tubulin, and scanning electron microscopy. Moreover, ES of a ramp waveform reduced microglial phagocytosis of fluorescent zymosan particles and suppressed lipopolysaccharide (LPS)-induced pro-inflammatory cytokine expression in BV-2 cells as shown by Proteome Profiler Mouse Cytokine Array. The results of quantitative PCR and immunostaining for cyclooxygenase-2, Interleukin 6, and Tumor Necrosis Factor-α corroborated the direct suppression of LPS-induced microglial responses by a ramp ES. Transcriptome profiling further demonstrated that ramp ES effectively suppressed nearly half of the LPS-induced genes, primarily relating to cellular motility, energy metabolism, and calcium signaling. Our results reveal a direct modulatory effect of ES on previously thought electrically "non-responsive" microglia and suggest a new avenue of employing ES for anti-inflammatory therapy.

7.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012190

RESUMEN

Epigenetic factors are known to influence tissue development, functionality, and their response to pathophysiology. This review will focus on different types of epigenetic regulators and their associated molecular apparatus that affect the optic nerve. A comprehensive understanding of epigenetic regulation in optic nerve development and homeostasis will help us unravel novel molecular pathways and pave the way to design blueprints for effective therapeutics to address optic nerve protection, repair, and regeneration.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Axones/fisiología , Epigénesis Genética , Vaina de Mielina/fisiología , Regeneración Nerviosa/genética , Oligodendroglía/fisiología , Nervio Óptico/fisiología
8.
Exp Eye Res ; 212: 108787, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34624335

RESUMEN

Recently, we reported ß-cleavage of the prion protein (PrPC) in human ocular tissues. Here, we explored whether this is unique to the human eye, and its functional implications. A comparison of the cleavage pattern of PrPC in human ocular tissues with common nocturnal and diurnal animals revealed mainly ß-cleavage in humans, and mostly full-length PrPC in animal retinas. Soluble FL PrPC and N-terminal fragment (N2) released from ß-cleavage was observed in the aqueous and vitreous humor (AH & VH). Expression of human PrPC in ARPE-19 cells, a human retinal pigmented epithelial cell line, also showed ß-cleaved PrPC. Surprisingly, ß-cleavage was not altered by a variety of insults, including oxidative stress, suggesting a unique role of this cleavage in the human eye. It is likely that ß-cleaved C- or N-terminal fragments of PrPC protect from various insults unique to the human eye. On the contrary, ß-cleaved C-terminus of PrPC is susceptible to conversion to the pathological PrP-scrapie form, and includes the binding sites for ß1-integrin and amyloid-ß, molecules implicated in several ocular disorders. Considering the species and tissue-specific cleavage of PrPC, our data suggest re-evaluation of prion infectivity and other ocular disorders of the human eye conducted in mouse models.


Asunto(s)
Oftalmopatías/metabolismo , Proteínas PrPC/metabolismo , División del ARN/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Epitelio Pigmentado de la Retina/patología
9.
Antioxidants (Basel) ; 10(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34439501

RESUMEN

To evaluate the role of iron in sodium iodate (NaIO3)-induced model of age-related macular degeneration (AMD) in ARPE-19 cells in-vitro and in mouse models in-vivo. ARPE-19 cells, a human retinal pigment epithelial cell line, was exposed to 10 mM NaIO3 for 24 h, and the expression and localization of major iron modulating proteins was evaluated by Western blotting (WB) and immunostaining. Synthesis and maturation of cathepsin-D (cat-D), a lysosomal enzyme, was evaluated by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) and WB, respectively. For in-vivo studies, C57BL/6 mice were injected with 40 mg/kg mouse body weight of NaIO3 intraperitoneally, and their retina was evaluated after 3 weeks as above. NaIO3 induced a 10-fold increase in ferritin in ARPE-19 cells, which co-localized with LC3II, an autophagosomal marker, and LAMP-1, a lysosomal marker. A similar increase in ferritin was noted in retinal lysates and retinal sections of NaIO3-injected mice by WB and immunostaining. Impaired synthesis and maturation of cat-D was also noted. Accumulated ferritin was loaded with iron, and released from retinal pigmented epithelial (RPE) cells in Perls' and LAMP-1 positive vesicles. NaIO3 impairs lysosomal degradation of ferritin by decreasing the transcription and maturation of cat-D in RPE cells. Iron-loaded ferritin accumulates in lysosomes and is released in lysosomal membrane-enclosed vesicles to the extracellular milieu. Accumulation of ferritin in RPE cells and fusion of ferritin-containing vesicles with adjacent photoreceptor cells is likely to create an iron overload, compromising their viability. Moreover, reduced activity of cat-D is likely to promote accumulation of other cellular debris in lysosomal vesicles, contributing to AMD-like pathology.

10.
Prion ; 15(1): 126-137, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34224321

RESUMEN

Accumulation of redox-active iron in human sporadic Creutzfeldt-Jakob disease (sCJD) brain tissue and scrapie-infected mouse brains has been demonstrated previously. Here, we explored whether upregulation of local hepcidin secreted within the brain is the underlying cause of iron accumulation and associated toxicity. Using scrapie-infected mouse brains, we demonstrate transcriptional upregulation of hepcidin relative to controls. As a result, ferroportin (Fpn), the downstream effector of hepcidin and the only known iron export protein was downregulated, and ferritin, an iron storage protein was upregulated, suggesting increased intracellular iron. A similar transcriptional and translational upregulation of hepcidin, and decreased expression of Fpn and an increase in ferritin expression was observed in sCJD brain tissue. Further evaluation in human neuroblastoma cells (M17) exposed to synthetic mini-hepcidin showed downregulation of Fpn, upregulation of ferritin, and an increase in reactive oxygen species (ROS), resulting in cytotoxicity in a dose-dependent manner. Similar effects were noted in primary neurons isolated from mouse brain. As in M17 cells, primary neurons accumulated ferritin and ROS, and showed toxicity at five times lower concentration of mini-hepcidin. These observations suggest that upregulation of brain hepcidin plays a significant role in iron accumulation and associated neurotoxicity in human and animal prion disorders.


Asunto(s)
Hepcidinas , Enfermedades por Prión , Animales , Encéfalo/metabolismo , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Ratones , Enfermedades por Prión/genética , Regulación hacia Arriba
11.
J Alzheimers Dis ; 82(4): 1487-1497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34180415

RESUMEN

BACKGROUND: Accumulation of iron is a consistent feature of Alzheimer's disease (AD) brains. The underlying cause, however, remains debatable. OBJECTIVE: To explore whether local hepcidin synthesized by brain cells contributes to iron accumulation in AD brains. METHODS: Brain tissue from the cingulate cortex of 33 cases of AD pre-assigned to Braak stage I-VI, 6 cases of non-dementia, and 15 cases of non-AD dementia were analyzed for transcriptional upregulation of hepcidin by RT-qPCR and RT-PCR. Change in the expression of ferritin, ferroportin (Fpn), microglial activation marker Iba1, IL-6, and TGFß2 was determined by western blotting. Total tissue iron was determined by colorimetry. RESULTS: Significant transcriptional upregulation of hepcidin was observed in Braak stage III-VI relative to Braak stage I and II, non-AD dementia, and non-dementia samples. Ferritin was increased in Braak stage V, and a significant increase in tissue iron was evident in Braak stage III-VI. The expression of Iba1 and IL-6 was also increased in Braak stage III-VI relative to Braak stage I and II and non-AD dementia samples. Amyloid-ß plaques were absent in most Braak stage I and II samples, and present in Braak stage III-VI samples with few exceptions. CONCLUSION: These observations suggest that upregulation of brain hepcidin is mediated by IL-6, a known transcriptional activator of hepcidin. The consequent downregulation of Fpn on neuronal and other cells results in accumulation of iron in AD brains. The increase in hepcidin is disease-specific, and increases with disease progression, implicating AD-specific pathology in the accumulation of iron.


Asunto(s)
Enfermedad de Alzheimer/patología , Antiinfecciosos/metabolismo , Ferritinas/metabolismo , Hepcidinas/metabolismo , Regulación hacia Arriba , Anciano , Autopsia , Encéfalo/patología , Femenino , Humanos , Interleucina-6/metabolismo , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023198

RESUMEN

Age-related macular degeneration (AMD) and glaucoma are degenerative conditions of the retina and a significant cause of irreversible blindness in developed countries. Alzheimer's disease (AD), the most common dementia of the elderly, is often associated with AMD and glaucoma. The cardinal features of AD include extracellular accumulation of amyloid ß (Aß) and intracellular deposits of hyper-phosphorylated tau (p-tau). Neuroinflammation and brain iron dyshomeostasis accompany Aß and p-tau deposits and, together, lead to progressive neuronal death and dementia. The accumulation of Aß and iron in drusen, the hallmark of AMD, and Aß and p-tau in retinal ganglion cells (RGC), the main retinal cell type implicated in glaucoma, and accompanying inflammation suggest overlapping pathology. Visual abnormalities are prominent in AD and are believed to develop before cognitive decline. Some are caused by degeneration of the visual cortex, while others are due to RGC loss or AMD-associated retinal degeneration. Here, we review recent information on Aß, p-tau, chronic inflammation, and iron dyshomeostasis as common pathogenic mechanisms linking the three degenerative conditions, and iron chelation as a common therapeutic option for these disorders. Additionally discussed is the role of prion protein, infamous for prion disorders, in Aß-mediated toxicity and, paradoxically, in neuroprotection.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Degeneración Macular/genética , Agregación Patológica de Proteínas/genética , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Glaucoma/complicaciones , Glaucoma/genética , Glaucoma/patología , Humanos , Degeneración Macular/complicaciones , Degeneración Macular/patología , Agregación Patológica de Proteínas/patología , Retina/metabolismo , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Exp Eye Res ; 199: 108200, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32858007

RESUMEN

Prion diseases are invariably fatal neurodegenerative disorders that have gained much publicity due to their transmissible nature. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disorder, with an incidence of 1 in a million. Inherited prion disorders are relatively rare, and associated with mutations in the prion protein gene. More than 50 different point mutations, deletions, and insertions have been identified so far. Most are autosomal dominant and fully penetrant. Prion disorders also occur in animals, and are of major concern because of the potential for spreading to humans. The principal pathogenic event underlying all prion disorders is a change in the conformation of prion protein (PrPC) from a mainly α-helical to a ß-sheet rich isoform, PrP-scrapie (PrPSc). Accumulation of PrPSc in the brain parenchyma is the major cause of neuronal degeneration. The mechanism by which PrPSc is transmitted, propagates, and causes neurodegenerative changes has been investigated over the years, and several clues have emerged. Efforts are also ongoing for identifying specific and sensitive diagnostic tests for sCJD and animal prion disorders, but success has been limited. The eye is suitable for these evaluations because it shares several anatomical and physiological features with the brain, and can be observed in vivo during disease progression. The retina, considered an extension of the central nervous system, is involved extensively in prion disorders. Accordingly, Optical Coherence Tomography and electroretinogram have shown some promise as pre-mortem diagnostic tests for human and animal prion disorders. However, a complete understanding of the physiology of PrPC and pathobiology of PrPSc in the eye is essential for developing specific and sensitive tests. Below, we summarize recent progress in ocular physiology and pathology in prion disorders, and the eye as an anatomically accessible site to diagnose, monitor disease progression, and test therapeutic options.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Regulación de la Expresión Génica , Priones/genética , Animales , Segmento Anterior del Ojo/patología , Homeostasis , Humanos , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Priones/biosíntesis , Conformación Proteica
14.
Invest Ophthalmol Vis Sci ; 61(3): 24, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182331

RESUMEN

Purpose: Elevated levels of transforming-growth-factor (TGF)-ß2 in the trabecular meshwork (TM) and aqueous humor are associated with primary open-angle glaucoma (POAG). The underlying mechanism includes alteration of extracellular matrix homeostasis through Smad-dependent and independent signaling. Smad4, an essential co-Smad, upregulates hepcidin, the master regulator of iron homeostasis. Here, we explored whether TGF-ß2 upregulates hepcidin, implicating iron in the pathogenesis of POAG. Methods: Primary human TM cells and human and bovine ex vivo anterior segment organ cultures were exposed to bioactive TGF-ß2, hepcidin, heparin (a hepcidin antagonist), or N-acetyl carnosine (an antioxidant), and the change in the expression of hepcidin, ferroportin, ferritin, and TGF-ß2 was evaluated by semiquantitative RT-PCR, Western blotting, and immunohistochemistry. Increase in reactive oxygen species (ROS) was quantified with dihydroethidium, an ROS-sensitive dye. Results: Primary human TM cells and bovine TM tissue synthesize hepcidin locally, which is upregulated by bioactive TGF-ß2. Hepcidin downregulates ferroportin, its downstream target, increasing ferritin and iron-catalyzed ROS. This causes reciprocal upregulation of TGF-ß2 at the transcriptional and translational levels. Heparin downregulates hepcidin, and reduces TGF-ß2-mediated increase in ferritin and ROS. Notably, both heparin and N-acetyl carnosine reduce TGF-ß2-mediated reciprocal upregulation of TGF-ß2. Conclusions: The above observations suggest that TGF-ß2 and hepcidin form a self-sustained feed-forward loop through iron-catalyzed ROS. This loop is partially disrupted by a hepcidin antagonist and an anti-oxidant, implicating iron and ROS in TGF-ß2-mediated POAG. We propose that modification of currently available hepcidin antagonists for ocular use may prove beneficial for the therapeutic management of TGF-ß2-associated POAG.


Asunto(s)
Glaucoma de Ángulo Abierto/metabolismo , Hepcidinas/metabolismo , Hierro/metabolismo , Malla Trabecular/efectos de los fármacos , Factor de Crecimiento Transformador beta2/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Western Blotting , Carnosina/análogos & derivados , Carnosina/farmacología , Proteínas de Transporte de Catión/metabolismo , Bovinos , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Femenino , Ferritinas/metabolismo , Glaucoma de Ángulo Abierto/patología , Heparina/farmacología , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Donantes de Tejidos , Malla Trabecular/metabolismo , Malla Trabecular/patología , Factor de Crecimiento Transformador beta2/metabolismo , Regulación hacia Arriba
15.
Exp Eye Res ; 190: 107890, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31811823

RESUMEN

PURPOSE: The avascular cornea, trabecular meshwork (TM), and lens obtain iron, an essential biometal, from the aqueous humor (AH). The mechanism by which this exchange is regulated, however, is unclear. Recently we reported that non-pigmented ciliary epithelial cells express ferroportin (Fpn) (Ashok, 2018b), an iron export protein modulated by hepcidin, the master regulator of iron homeostasis secreted mainly by the liver. Here, we explored whether ciliary epithelial and other cells in the anterior segment synthesize hepcidin, suggesting local regulation of iron exchange at this site. METHODS: Human and bovine eyes were dissected to isolate the ciliary body (CB), corneal endothelial (CE), TM, lens epithelial (LE), and outer epithelial cell layer of the iris. Total mRNA and protein lysates were processed to evaluate the synthesis and expression of hepcidin, the iron regulatory peptide hormone, Fpn, the only known iron export protein, ceruloplasmin (Cp), a ferroxidase necessary for iron export, transferrin receptor (TfR), a major iron uptake protein, and ferritin, a major iron storage protein. A combination of techniques including reverse transcription polymerase chain reaction (RT-PCR) of total mRNA, Western blotting of protein lysates, and immunofluorescence of fixed tissue sections were used to accomplish these goals. RESULTS: RT-PCR of isolated tissue samples revealed hepcidin-specific mRNA in the CB, TM, CE, and LE of the bovine eye. Western blotting of protein lysates from these tissues showed reactivity for hepcidin, Fpn, ferritin, and TfR. Western blotting and immunohistochemistry of similar tissues isolated from cadaveric human eyes showed expression of hepcidin, Fpn, and Cp in these samples. Notably, Fpn and Cp were expressed on the basolateral membrane of non-pigmented ciliary epithelial cells, facing the AH. CONCLUSIONS: Synthesis and expression of hepcidin and Fpn in the ciliary epithelium suggests local regulation of iron transport from choroidal plexus in the ciliary body to the AH across the blood-aqueous barrier. Expression of hepcidin and Fpn in CE, TM, and LE cells indicates additional regulation of iron exchange between the AH and cornea, TM, and lens, suggesting autonomous regulation of iron homeostasis in the anterior segment. Physiological and pathological implications of these observations are discussed.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Antiinfecciosos/metabolismo , Hepcidinas/biosíntesis , Adulto , Anciano , Animales , Western Blotting , Proteínas de Transporte de Catión/metabolismo , Bovinos , Ceruloplasmina/metabolismo , Cuerpo Ciliar/metabolismo , Electroforesis en Gel de Poliacrilamida , Endotelio Corneal/metabolismo , Células Epiteliales/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Hepcidinas/genética , Humanos , Iris/metabolismo , Cristalino/metabolismo , Masculino , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Malla Trabecular/metabolismo
16.
Sci Rep ; 9(1): 13090, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511544

RESUMEN

Endothelial-to-mesenchyme-like transition (Endo-MT) of trabecular meshwork (TM) cells is known to be associated with primary open angle glaucoma (POAG). Here, we investigated whether the prion protein (PrPC), a neuronal protein known to modulate epithelial-to-mesenchymal transition in a variety of cell types, is expressed in the TM, and plays a similar role at this site. Using a combination of primary human TM cells and human, bovine, and PrP-knock-out (PrP-/-) mouse models, we demonstrate that PrPC is expressed in the TM of all three species, including endothelial cells lining the Schlemm's canal. Silencing of PrPC in primary human TM cells induces aggregation of ß1-integrin and upregulation of α-smooth muscle actin, fibronectin, collagen 1A, vimentin, and laminin, suggestive of transition to a mesenchyme-like phenotype. Remarkably, intraocular pressure is significantly elevated in PrP-/- mice relative to wild-type controls, suggesting reduced pliability of the extracellular matrix and increased resistance to aqueous outflow in the absence of PrPC. Since PrPC is cleaved by members of the disintegrin and matrix-metalloprotease family that are increased in the aqueous humor of POAG arising from a variety of conditions, it is likely that concomitant cleavage of PrPC exaggerates and confounds the pathology by inducing Endo-MT-like changes in the TM.


Asunto(s)
Células Endoteliales/citología , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Mesodermo/citología , Proteínas PrPC/metabolismo , Malla Trabecular/citología , Animales , Bovinos , Células Endoteliales/patología , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Mesodermo/patología , Ratones , Proteínas PrPC/deficiencia , Proteínas PrPC/genética , Malla Trabecular/metabolismo , Malla Trabecular/patología
18.
Exp Eye Res ; 175: 1-13, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859760

RESUMEN

Iron is an essential biometal in the aqueous humor, the principal source of nutrients for the avascular cornea and the lens. Here, we explored whether the ciliary body (CB), the source of aqueous humor, transports iron, and if the prion protein (PrPC) facilitates this process as in the outer retina. Using a combination of human, bovine, and mouse eyes as models, we report the expression of iron export proteins ferroportin and ceruloplasmin, and major iron uptake and storage proteins transferrin, transferrin receptor, and ferritin in the ciliary epithelium, indicating active exchange of iron at this site. Ferroportin and transferrin receptor are also expressed in the corneal endothelium. However, the relative expression of iron export and uptake proteins suggests export from the ciliary epithelium and import by corneal endothelium. In addition, abundant expression of PrPC, a ferrireductase that facilitates iron transport, is noted in pigmented and non-pigmented epithelium of the CB, posterior pigmented epithelium of the iris, corneal endothelium and epithelium, and lens epithelium. Notably, majority of PrPC in the ciliary epithelium is cleaved at the ß-site as in retinal pigment epithelial cells, suggesting a role in iron transport. Most of the PrPC in the cornea, however, is full-length, and susceptible to aggregation by intracerebrally inoculated PrP-scrapie, an infectious conformation of PrPC responsible for human and animal prion disorders. Soluble PrPC is present in the aqueous and vitreous humor, a provocative observation with significant implications. Together, these observations suggest independent cycling of iron in the anterior segment, and a prominent role of PrPC in this process. Aggregation of PrPC in the cornea of PrP-scrapie-infected animals raises the alarming possibility of transmission of animal prions through corneal abrasions.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Proteínas de Unión a Hierro/metabolismo , Proteínas PrPC/fisiología , Enfermedad Debilitante Crónica/metabolismo , Enfermedad Debilitante Crónica/transmisión , Animales , Transporte Biológico , Western Blotting , Proteínas de Transporte de Catión/metabolismo , Bovinos , Ceruloplasmina , Cuerpo Ciliar/metabolismo , Modelos Animales de Enfermedad , Electroforesis en Gel de Poliacrilamida , Células Epiteliales/metabolismo , Femenino , Ferritinas/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Homeostasis/fisiología , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores de Transferrina/metabolismo , Transferrina/metabolismo
19.
Sci Rep ; 8(1): 6556, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700330

RESUMEN

The prion protein (PrPC), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic ß-cell line 1.1B4. We report expression of PrPC on mouse pancreatic ß-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP-/-) were significantly lower than wild type (PrP+/+) controls. Silencing of PrPC in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrPC-dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP+/+ but not PrP-/- mice, indicating PrPC-mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP+/+ relative to PrP-/- mice, suggesting that PrPC-mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Hierro/metabolismo , Proteínas Priónicas/metabolismo , Animales , Transporte Biológico , Glucemia , Metabolismo de los Hidratos de Carbono , Técnica del Anticuerpo Fluorescente , Expresión Génica , Insulinoma/metabolismo , Espacio Intracelular , Hígado/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Páncreas/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas Priónicas/genética , Retina/metabolismo
20.
Sci Rep ; 7(1): 9600, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851903

RESUMEN

Prion disease-associated retinal degeneration is attributed to PrP-scrapie (PrPSc), a misfolded isoform of prion protein (PrPC) that accumulates in the neuroretina. However, a lack of temporal and spatial correlation between PrPSc and cytotoxicity suggests the contribution of host factors. We report retinal iron dyshomeostasis as one such factor. PrPC is expressed on the basolateral membrane of retinal-pigment-epithelial (RPE) cells, where it mediates uptake of iron by the neuroretina. Accordingly, the neuroretina of PrP-knock-out mice is iron-deficient. In RPE19 cells, silencing of PrPC decreases ferritin while over-expression upregulates ferritin and divalent-metal-transporter-1 (DMT-1), indicating PrPC-mediated iron uptake through DMT-1. Polarization of RPE19 cells results in upregulation of ferritin by ~10-fold and ß-cleavage of PrPC, the latter likely to block further uptake of iron due to cleavage of the ferrireductase domain. A similar ß-cleavage of PrPC is observed in mouse retinal lysates. Scrapie infection causes PrPSc accumulation and microglial activation, and surprisingly, upregulation of transferrin despite increased levels of ferritin. Notably, detergent-insoluble ferritin accumulates in RPE cells and correlates temporally with microglial activation, not PrPSc accumulation, suggesting that impaired uptake of iron by PrPSc combined with inflammation results in retinal iron-dyshomeostasis, a potentially toxic host response contributing to prion disease-associated pathology.


Asunto(s)
Hierro/metabolismo , Proteínas Priónicas/metabolismo , Retina/metabolismo , Animales , Transporte Biológico , Cricetinae , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Homeostasis , Humanos , Ratones , Ratones Noqueados , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Enfermedades por Prión/etiología , Enfermedades por Prión/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/genética , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...