Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Asthma ; : 1-10, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38805387

RESUMEN

OBJECTIVE: The primary objective of this review is to focus on research findings that aim to determine the immunomodulatory action of ginger's active components and the molecular mechanisms that reduce asthma. The study aims to provide an overview of the scientific literature available on ginger's efficacy in treating allergic asthma. DATA SOURCE: The mouse model of asthma has been used to investigate the actions of ginger and its active compounds on allergies and asthma. Various studies and scientific literature on ginger's health-improving qualities and its traditional use have been examined. RESULTS: The findings indicate that ginger and its active ingredients have anti-asthmatic features and a suppressive impact on mast cell production of histamine. Animals given ginger and compounds derived from ginger demonstrate a notable reduction in allergic response, suggesting a significant role in lowering the allergic reaction. CONCLUSION: While ginger shows promise as a potential treatment for allergies and asthma due to its anti-inflammatory, antibacterial, antidiabetic, anticancer, and antioxidant effects, further examination, extrapolation, and confirmation of these results are necessary before utilizing ginger and its active components in human treatments. This review highlights the need for additional research and provides an overview of the current scientific literature on ginger's efficacy in treating allergic asthma.

2.
Int Immunopharmacol ; 132: 111985, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38603862

RESUMEN

BACKGROUND: Bronchial asthma is a severe respiratory condition characterized by airway inflammation, remodeling, and oxidative stress. ß-Glucan (BG) is a polysaccharide found in fungal cell walls with powerful immunomodulatory properties. This study examined and clarified the mechanisms behind BG's ameliorativeactivitiesin an allergic asthma animal model. METHOD: BG was extracted from Chaga mushroom and characterized using FT-IR, UV-visible, zeta potential, and 1H NMR analysis. The mice were divided into five groups, including control, untreated asthmatic, dexamethasone (Dexa)-treated (1 mg/kg), and BG (30 and 100 mg/kg)-treated groups. RESULTS: BG treatment reduced nasal scratching behavior, airway-infiltrating inflammatory cells, and serum levels of IgE significantly. Additionally, BG attenuated oxidative stress biomarkers by lowering malonaldehyde (MDA) concentrations and increasing the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT). Immunohistochemical and flow cytometric analyses have confirmed the suppressive effect of BG on the percentage of airway-infiltrating cytotoxic CD8+ T cells. CONCLUSION: The findings revealed the role of CD8+ T cells in the pathogenesis of asthma and the role of BG as a potential therapeutic agent for asthma management through the suppression of airway inflammation and oxidative stress.


Asunto(s)
Asma , Linfocitos T CD8-positivos , Ratones Endogámicos BALB C , Ovalbúmina , Estrés Oxidativo , beta-Glucanos , Animales , Estrés Oxidativo/efectos de los fármacos , beta-Glucanos/farmacología , beta-Glucanos/uso terapéutico , beta-Glucanos/química , Asma/tratamiento farmacológico , Asma/inmunología , Asma/inducido químicamente , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Ovalbúmina/inmunología , Ratones , Modelos Animales de Enfermedad , Inmunoglobulina E/sangre , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Femenino , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...