Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483654

RESUMEN

T14, a 14mer peptide, is significantly increased in the pre-symptomatic Alzheimer's disease brain, and growing evidence implies its pivotal role in neurodegeneration. Here, we explore the subsequent intracellular events following binding of T14 to its target α7 nicotinic acetylcholine receptor (nAChR). Specifically, we test how various experimental manipulations of PC12 cells impact T14-induced functional outcomes. Three preparations were compared: (i) undifferentiated vs. NGF-differentiated cells; (ii) cells transfected with an overexpression of the target α7 nAChR vs. wild type cells; (iii) cells transfected with a mutant α7 nAChR containing a mutation in the G protein-binding cluster, vs. cells transfected with an overexpression of the target α7 nAChR, in three functional assays - calcium influx, cell viability, and acetylcholinesterase release. NGF-differentiated PC12 cells were less sensitive than undifferentiated cells to the concentration-dependent T14 treatment, in all the functional assays performed. The overexpression of α7 nAChR in PC12 cells promoted enhanced calcium influx when compared with the wild type PC12 cells. The α7345-348 A mutation effectively abolished the T14-triggered responses across all the readouts observed. The close relationship between T14 and the α7 nAChR was further evidenced in the more physiological preparation of ex vivo rat brain, where T30 increased α7 nAChR mRNA, and finally in human brain post-mortem, where levels of T14 and α7 nAChR exhibited a strong correlation, reflecting the progression of neurodegeneration. Taken together these data would make it hard to account for T14 binding to any other receptor, and thus interception at this binding site would make a very attractive and remarkably specific therapeutic strategy.

2.
Heliyon ; 9(6): e17362, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389046

RESUMEN

Whilst the regulation of chromatin accessibility and its effect on gene expression have been well studied in eukaryotic species, the role of chromatin dynamics and 3D organisation in genome reduced bacteria remains poorly understood [1,2]. In this study we profiled the accessibility of the Mycoplasma hyorhinis genome, these data were collected fortuitously as part of an experiment where ATAC-Seq was conducted on mycoplasma, contaminated mammalian cells. We found a differential and highly reproducible chromatin accessibility landscape, with regions of increased accessibility corresponding to genes important for the bacteria's life cycle and infectivity. Furthermore, accessibility in general correlated with transcriptionally active genes as profiled by RNA-Seq, but peaks of high accessibility were also seen in non-coding and intergenic regions, which could contribute to the topological organisation of the genome. However, changes in transcription induced by starvation or application of the RNA polymerase inhibitor rifampicin did not themselves change the accessibility profile, which confirms that the differential accessibility is inherently a property of the genome, and not a consequence of its function. These results together show that differential chromatin accessibility is a key feature of the regulation of gene expression in bacteria.

3.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373106

RESUMEN

T14 modulates calcium influx via the α-7 nicotinic acetylcholine receptor to regulate cell growth. Inappropriate triggering of this process has been implicated in Alzheimer's disease (AD) and cancer, whereas T14 blockade has proven therapeutic potential in in vitro, ex vivo and in vivo models of these pathologies. Mammalian target of rapamycin complex 1 (mTORC1) is critical for growth, however its hyperactivation is implicated in AD and cancer. T14 is a product of the longer 30mer-T30. Recent work shows that T30 drives neurite growth in the human SH-SY5Y cell line via the mTOR pathway. Here, we demonstrate that T30 induces an increase in mTORC1 in PC12 cells, and ex vivo rat brain slices containing substantia nigra, but not mTORC2. The increase in mTORC1 by T30 in PC12 cells is attenuated by its blocker, NBP14. Moreover, in post-mortem human midbrain, T14 levels correlate significantly with mTORC1. Silencing mTORC1 reverses the effects of T30 on PC12 cells measured via AChE release in undifferentiated PC12 cells, whilst silencing mTORC2 does not. This suggests that T14 acts selectively via mTORC1. T14 blockade offers a preferable alternative to currently available blockers of mTOR as it would enable selective blockade of mTORC1, thereby reducing side effects associated with generalised mTOR blockade.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Ratas , Animales , Humanos , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Péptidos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Enfermedad de Alzheimer/patología , Mamíferos/metabolismo
4.
PLoS One ; 18(2): e0281264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730342

RESUMEN

The atypical protein tyrosine phosphatase enzyme, dual-specificity phosphate 15 (DUSP15) is thought to be activated by myelin regulatory factor (MyRF) and to have a role in oligodendrocyte differentiation. Here, we assess whether Dusp15 is reduced in the hippocampus of mice with conditional knock-out of Myrf in oligodendrocyte precursor cells. Using quantitative polymerase chain reaction (qPCR) we found that Dusp15 expression was indeed lower in these mice. Alterations in myelin have been associated with Alzheimer's disease (AD), autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Symptoms of these disorders can include impairments of object recognition and attention. We, therefore tested the mice in the object recognition task (ORT) and 5-choice serial reaction time task (5CSRTT). However, we did not find behavioural impairments indicating that attentional abilities and object recognition are not impacted by reduced oligodendrogenesis and hippocampal Dusp15 expression. Gaining insight into the role of newly formed oligodendrocytes and Dusp15 expression is helpful for the development of well targeted treatments for myelin dysregulation.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Ratones , Animales , Ratones Noqueados , Trastorno del Espectro Autista/metabolismo , Fosfatos/metabolismo , Vaina de Mielina/metabolismo , Hipocampo , Trastorno por Déficit de Atención con Hiperactividad/metabolismo
5.
Cells ; 12(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672220

RESUMEN

The pineal gland is integral to the circadian timing system due to its role in nightly melatonin production. Retinoic acid (RA) is a potent regulator of gene transcription and has previously been found to exhibit diurnal changes in synthesis and signalling in the rat pineal gland. This study investigated the potential for the interaction of these two systems. PCR was used to study gene expression in mouse and human pineal glands, ex-vivo organotypic cultured rat pineal gland and cell lines. The mouse and human pineal glands were both found to express the necessary components required for RA signalling. RA influences the circadian clock in the brain, therefore the short-term effect of RA on clock gene expression was determined in ex vivo rat pineal glands but was not found to rapidly regulate Per1, Per2, Bmal1, or Cry1. The interaction between RA and melatonin was also investigated and, unexpectedly, melatonin was found to suppress the induction of gene transcription by RA. This study demonstrates that pineal expression of the RA signalling system is conserved across mammalian species. There is no short-term regulation of the circadian clock but an inhibitory effect of melatonin on RA transcriptional activity was demonstrated, suggesting that there may be functional cross-talk between these systems.


Asunto(s)
Melatonina , Glándula Pineal , Ratas , Ratones , Humanos , Animales , Glándula Pineal/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Transducción de Señal , Mamíferos/metabolismo
6.
iScience ; 26(2): 105877, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36590897

RESUMEN

Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.

7.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054913

RESUMEN

Circadian rhythms are essential for the survival of all organisms, enabling them to predict daily changes in the environment and time their behaviour appropriately. The molecular basis of such rhythms is the circadian clock, a self-sustaining molecular oscillator comprising a transcriptional-translational feedback loop. This must be continually readjusted to remain in alignment with the external world through a process termed entrainment, in which the phase of the master circadian clock in the suprachiasmatic nuclei (SCN) is adjusted in response to external time cues. In mammals, the primary time cue, or "zeitgeber", is light, which inputs directly to the SCN where it is integrated with additional non-photic zeitgebers. The molecular mechanisms underlying photic entrainment are complex, comprising a number of regulatory factors. This review will outline the photoreception pathways mediating photic entrainment, and our current understanding of the molecular pathways that drive it in the SCN.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Luz , Fotoperiodo , Animales , Humanos , Mamíferos , Células Ganglionares de la Retina/fisiología , Núcleo Supraquiasmático/fisiología
8.
BMC Biotechnol ; 22(1): 5, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086540

RESUMEN

BACKGROUND: The fall armyworm, Spodoptera frugiperda, is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins (Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools. Previous modelling and empirical studies have demonstrated that releases of insecticide- or Bt-susceptible insects genetically modified to express conditional female mortality can both dilute insecticide resistance and suppress pest populations. RESULTS: Here, we describe the first germline transformation of the fall armyworm and the development of a genetically engineered male-selecting self-limiting strain, OX5382G, which exhibits complete female mortality in the absence of an additive in the larval diet. Laboratory experiments showed that males of this strain are competitive against wild-type males for copulations with wild-type females, and that the OX5382G self-limiting transgene declines rapidly to extinction in closed populations following the cessation of OX5382G male releases. Population models simulating the release of OX5382G males in tandem with Bt crops and non-Bt 'refuge' crops show that OX5382G releases can suppress fall armyworm populations and delay the spread of resistance to insecticidal proteins. CONCLUSIONS: This article describes the development of self-limiting fall armyworm designed to control this pest by suppressing pest populations, and population models that demonstrate its potential as a highly effective method of managing resistance to Bt crops in pest fall armyworm populations. Our results provide early promise for a potentially valuable future addition to integrated pest management strategies for fall armyworm and other pests for which resistance to existing crop protection measures results in damage to crops and impedes sustainable agriculture.


Asunto(s)
Proteínas Hemolisinas , Insecticidas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Protección de Cultivos , Productos Agrícolas/genética , Endotoxinas , Femenino , Proteínas Hemolisinas/genética , Insecticidas/farmacología , Masculino , Plantas Modificadas Genéticamente/metabolismo , Spodoptera/genética , Zea mays/genética
9.
iScience ; 24(10): 103144, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34545347

RESUMEN

The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2.

10.
bioRxiv ; 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33758862

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2 coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract, via Spike glycoprotein binding angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism’s response to its environment and can regulate host susceptibility to virus infection. We demonstrate a circadian regulation of ACE2 in lung epithelial cells and show that silencing BMAL1 or treatment with a synthetic REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry. Treating infected cells with SR9009 limits viral replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced a wide spectrum of interferon stimulated genes in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to dampen SARS-CoV-2 infection. Our study suggests new approaches to understand and improve therapeutic targeting of SARS-CoV-2.

11.
Front Neurosci ; 14: 636, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655359

RESUMEN

Sleep and circadian rhythm disruption (SCRD) is a common feature of schizophrenia, and is associated with symptom severity and patient quality of life. It is commonly manifested as disturbances to the sleep/wake cycle, with sleep abnormalities occurring in up to 80% of patients, making it one of the most common symptoms of this disorder. Severe circadian misalignment has also been reported, including non-24 h periods and phase advances and delays. In parallel, there are alterations to physiological circadian parameters such as body temperature and rhythmic hormone production. At the molecular level, alterations in the rhythmic expression of core clock genes indicate a dysfunctional circadian clock. Furthermore, genetic association studies have demonstrated that mutations in several clock genes are associated with a higher risk of schizophrenia. Collectively, the evidence strongly suggests that sleep and circadian disruption is not only a symptom of schizophrenia but also plays an important causal role in this disorder. The alterations in dopamine signaling that occur in schizophrenia are likely to be central to this role. Dopamine is well-documented to be involved in the regulation of the sleep/wake cycle, in which it acts to promote wakefulness, such that elevated dopamine levels can disturb sleep. There is also evidence for the influence of dopamine on the circadian clock, such as through entrainment of the master clock in the suprachiasmatic nuclei (SCN), and dopamine signaling itself is under circadian control. Therefore dopamine is closely linked with sleep and the circadian system; it appears that they have a complex, bidirectional relationship in the pathogenesis of schizophrenia, such that disturbances to one exacerbate abnormalities in the other. This review will provide an overview of the evidence for a role of SCRD in schizophrenia, and examine the interplay of this with altered dopamine signaling. We will assess the evidence to suggest common underlying mechanisms in the regulation of sleep/circadian rhythms and the pathophysiology of schizophrenia. Improvements in sleep are associated with improvements in symptoms, along with quality of life measures such as cognitive ability and employability. Therefore the circadian system holds valuable potential as a new therapeutic target for this disorder.

12.
Mol Neurobiol ; 55(11): 8219-8235, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29520716

RESUMEN

Vitamin A is important for the circadian timing system; deficiency disrupts daily rhythms in activity and clock gene expression, and reduces the nocturnal peak in melatonin in the pineal gland. However, it is currently unknown how these effects are mediated. Vitamin A primarily acts via the active metabolite, retinoic acid (RA), a transcriptional regulator with emerging non-genomic activities. We investigated whether RA is subject to diurnal variation in synthesis and signaling in the rat pineal gland. Its involvement in two key molecular rhythms in this gland was also examined: kinase activation and induction of Aanat, which encodes the rhythm-generating melatonin synthetic enzyme. We found diurnal changes in expression of several genes required for RA signaling, including a RA receptor and synthetic enzymes. The RA-responsive gene Cyp26a1 was found to change between day and night, suggesting diurnal changes in RA activity. This corresponded to changes in RA synthesis, suggesting rhythmic production of RA. Long-term RA treatment in vitro upregulated Aanat transcription, while short-term treatment had no effect. RA was also found to rapidly downregulate extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, suggesting a rapid non-genomic action which may be involved in driving the molecular rhythm in ERK1/2 activation in this gland. These results demonstrate that there are diurnal changes in RA synthesis and activity in the rat pineal gland which are partially under circadian control. These may be key to the effects of vitamin A on circadian rhythms, therefore providing insight into the molecular link between this nutrient and the circadian system.


Asunto(s)
Ritmo Circadiano , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glándula Pineal/metabolismo , Transducción de Señal , Tretinoina/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , N-Acetiltransferasa de Arilalquilamina/biosíntesis , N-Acetiltransferasa de Arilalquilamina/genética , Ritmo Circadiano/genética , Oscuridad , Regulación hacia Abajo/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Masculino , Modelos Biológicos , Norepinefrina/farmacología , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Retinal-Deshidrogenasa/metabolismo , Ácido Retinoico 4-Hidroxilasa/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología
13.
Brain Behav Immun ; 61: 340-352, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27993690

RESUMEN

Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.


Asunto(s)
Histona Desacetilasas/genética , Hipotálamo/metabolismo , Fotoperiodo , Estaciones del Año , Transducción de Señal/fisiología , Animales , Línea Celular , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Hipotálamo/efectos de los fármacos , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
14.
Brain Struct Funct ; 221(6): 3315-26, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26374207

RESUMEN

Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2-7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2-7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system.


Asunto(s)
Comunicación Autocrina , Encéfalo/enzimología , Homeostasis , Comunicación Paracrina , Ácido Retinoico 4-Hidroxilasa/metabolismo , Tretinoina/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Línea Celular Tumoral , Proliferación Celular , Corteza Cerebral/enzimología , Cuerpo Estriado/enzimología , Femenino , Expresión Génica , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Masculino , Persona de Mediana Edad , Ratas , Retinal-Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...